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Summary

It is widely accepted that bone strength depends on both its
structural and material properties. The latter, although impor-
tant, are difficult to establish until fairly recently. The new gen-
eration of infrared microspectroscopic and imaging instru-
ments offers a unique tool in determining the material proper-
ties of bone as they allow the study of thin tissue sections and
the determination of important parameters such as mineral
maturity/crystallinity and collagen cross-links ratio in a spa-
tially resolved manner, thus enabling the correlation with
bone turnover. Despite the fact that the utility of such tech-
niques as mass screening tools is currently debated since a
biopsy is required, studies employing this technology have
advanced our knowledge of the underlying mechanism of
bone disease and the course of action of various therapeutic
protocols. 

KEY WORDS: infrared spectroscopy, bone quality, osteoporosis, bone
strength, mineral maturity, collagen cross-links.

Bone

Bone is a composite material, consisting mainly of mineral and
collagen. In normal humans, cortical bone constitutes approxi-
mately 80% of the human skeletal mass and trabecular bone
approximately 20%. Bone surfaces may be undergoing forma-
tion or resorption, or they may be inactive. These processes
occur throughout life in both cortical and trabecular bone. Bone
remodeling is a surface phenomenon and in humans occurs on
periosteal, endosteal, Haversian canal, and trabecular surfaces
(1, 2). The rate of cortical bone remodeling, which may be as
high as 50% per year in the mid-shaft of the femur during the
first two years of life, eventually declines to a rate of 2%-5%
per year in the elderly. Rates of remodeling in trabecular bone
are proportionately higher throughout life and may normally be
5-10 times higher than cortical bone remodeling rates in the
adult (1, 2). As is evident, tissue age is variable within the

same human.
Osteoporosis & bone strength

Osteoporosis is an increasing public health problem. Currently
osteoporosis is estimated to affect 200,000 people per year
worldwide, costing the health care system over $ 10 billion per
year in the US alone (3). Historically osteoporosis has been
defined as a disease in which there is “too little bone, but what
there is, is normal” (4). Recently, osteoporosis was defined as
“a disease characterized by low bone mass and microarchitec-
tural deterioration of bone tissue, leading to enhanced bone
fragility and a consequent increase in fracture risk” (5). Despite
the major efforts (6) being put into producing new therapies to
prevent and reduce the bone loss that leads to osteoporosis,
and to limit further loss when osteoporosis is recognized, the
factors contributing to the fragility of bone are still being deter-
mined.
Loss of bone mass, measured clinically as change in bone
mineral density (BMD), is considered an important risk factor
for bone fragility. However, BMD is not the sole predictor of
whether an individual will experience a fracture (7, 8), and
there is considerable overlap in BMD between populations that
do and do not develop fractures (9-11). It has been demon-
strated that for a given bone mass an individual’s risk to frac-
ture increases with age (12). Consistent with these findings,
numerous investigators have shown that mechanical variables
directly related to fracture risk are either independent or not to-
tally accounted for by bone mass itself (13-18). Epidemiologi-
cal evidence also shows considerable overlap of bone density
values between fracture and non-fracture groups suggesting
that low bone quantity alone is an insufficient cause of fragility
fractures (9, 19-21). It is becoming evident then, that in addi-
tion to BMD, bone quality should also be considered when as-
sessing bone strength and fracture risk. Bone quality is a broad
term encompassing a plethora of factors such as geometry and
bone mass distribution, trabecular bone microarchitecture, mi-
crodamage, remodeling activity, along with genetics, body size,
environmental factors, and changes in bone tissue material
(mineral maturity / crystallinity, collagen cross-links) properties
(10, 11, 22). 

Bone mineral

Bone mineral is a poorly crystalline hydroxyapatite [Ca5(PO4)3OH]
phase. Ion substitutions are abundant. For example, Na+1, and
Mg+2 are substituting Ca+2 ions, HPO4

–2 ions substituting the
phosphate ions, Cl–1 and F–1 substituting OH–1, and CO3

–2 sub-
stituting for either phosphate or hydroxyl groups. Once mineral is
deposited in bone by osteoblasts, it is not a static moiety, but
rather a dynamic one. Since it is bathed in aqueous biological
fluids, the type and extent of these substitutions changes with
time resulting in alterations of the mineral maturity, which is ac-
companied by changes in mineral crystallite size and /or shape
(23, 24).
The contribution of mineral maturity, and crystallite size and
shape to bone strength is very apparent in the case of fluoride
treated bone (25-29). 
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In both animal models and in humans it has been reported that
osteoporotic bone mineral characteristically consists of crystals
which are larger and more perfect than in normal bone (30,
31), smaller and less perfect (32), or that there are no differ-
ences (33). Typically in these studies, tissues were homoge-
nized prior to analysis, concealing the effect of spatial varia-
tions in mineral properties. Recently, utilizing techniques such
as Small Angle X-ray Scattering (SAXS), and quantitative
backscattered electron imaging (qBEI), the analysis of bone
mineral (poorly crystalline hydroxyapatite) at the microscopic
level and the contribution of mineral crystallinity (crystallite
size) and maturity (chemical composition) to bone strength is
being actively pursued (22, 26-29, 34-49). Based on such stud-
ies, models for the importance of mineral crystallite shape and
size in determining bone strength have been put forth (50).

Bone collagen & collagen cross-links

The organic matrix of bone consists of collagen and a series of
non-collagenous proteins and lipids. Some 85%-90% of the to-
tal bone protein consists of collagen fibers (51). Type I colla-
gen, the principal component of the organic matrix of bone, as
well as other connective tissues, is a large fibrous protein with
a highly repetitive amino acid sequence [Gly (glycine) – X – Y]n
(often X is proline and Y is hydroxyproline) (52-54). This repeti-
tive sequence allows three polypeptide chains (called α chains;
type I collagen is composed of two α1 and one α2 chains) to
fold into a unique triple-helical structure. It consists of three do-
mains: the –NH2 terminal nontriple helical, the triple helical,
and the –COOH terminal nontriple helical domains. The single
uninterrupted triple helical domain represents more than 95%
of the molecule. 
The most distinct feature of type I collagen in mineralized tis-
sues can be seen in its cross-linking chemistry and molecular
packing structure (54). The intermolecular cross-linking pro-
vides the fibrillar matrices with various mechanical properties
such as tensile strength and viscoelasticity. All the known
cross-links of type I collagen are condensation products be-
tween the prosthetic groups of juxtaposed specific peptidyl
residues of lysine (Lys), hydroxylysine (Hyl), and histidine
(His). At present, seven major collagen cross-links have been
established as naturally occurring intermolecular cross-links.
They are (1) dehydrodihydroxylysinonorleucine (deH-DHLNL),
(2) dehydrohydroxylysinonorleucine (deH-HLNL), (3) dehydro-
histidinohydroxymerodesmosine (deH-HHMD), (4) pyridinoline
(Pyr), (5) deoxypyridinoline (d-Pyr; lysyl analog of Pyr), (6) pyr-
role, and (7) histidinohydroxylysinonorleucine (HHL). The first
three are NaBH4-reducible (their reduced forms are referred to
as DHLNL, HLNL, and HHMD, respectively) and the rest are
non-reducible compounds (54-57).
Altered collagen structure and inferior bone mechanical proper-
ties are encountered in the case of osteogenesis imperfecta, in
both humans and animal models (35,58-68). The importance of
collagen intermolecular cross-links to the mechanical perfor-
mance of bone is also very apparent in the pyridoxine deficient
chick animal model (69-71), as well as in lathyrism (72, 73).

Infrared spectroscopy

Molecular bonds are not stationary, but rather undergo motion
such as twisting, bending, stretching, rotation and vibration.
When irradiated with infrared radiation, these vibrational mo-
tions absorb at specific wavelengths, characteristic of the over-
all configuration of the atoms, and representative of specific
functional groups. Moreover, through detailed analysis of the

absorption wavelengths, information may be deduced on the
subtle interactions with the surrounding atoms of a molecule.
FTIR spectra provide information on all tissue components.
The protein and mineral constituents produce intense, struc-
ture sensitive IR modes.
IR spectroscopy has been extensively utilized in the analysis of
bone mineral (74-99). Spectroscopic and mathematical analy-
sis of the phosphate band by means of techniques such as de-
convolution, second derivative spectroscopy, and curvefitting,
spectral regions (underlying peaks) were identified and corre-
lated with the various chemical environments present in biolog-
ical apatites, enabling the monitoring of the calcium phosphate
crystal maturity (ionic substitutions, stoichiometry) (78, 79, 84,
88-95, 97, 99). 
The protein Amide I (peptide bond C=O stretch) and Amide II
(mixed C-N stretch and N-H in-plane bend) modes near 1650
and 1550 wavenumbers (cm–1), undergo frequency and inten-
sity changes as a result of changes in protein secondary struc-
ture. The Amide I band is especially sensitive to secondary
structures (100). In such studies, information on protein struc-
tures is extracted from broad envelopes consisting of compo-
nent bands arising from the Amide I modes of various sec-
ondary structures by applying a technique of resolution en-
hancement such as Fourier self-deconvolution, second deriva-
tive spectroscopy, and difference FTIR (100-106).
Although detailed information on mineral maturity and protein
secondary structure was obtainable utilizing these techniques,
homogenized bone tissue and / or proteins in solution had to
be used, thus it was not possible to correlate the findings with
the metabolic activity of bone surfaces (tissue age).

Infrared microspectroscopy

The coupling of an optical microscope with an infrared spec-
trometer in the early 1990’s offered the unique opportunity of
studying thin bone tissues with a spatial resolution of ~ 10 µm,
and to select the anatomical areas to be analyzed based on
parallel histologically stained sections thus enabling the corre-
lation of the spectroscopic result with bone surface metabolic
activity (tissue age). The pioneering work of Drs Mendelsohn
and Boskey (107-109) was later followed and expanded by
them and others (38,110-124), resulting in a wealth of new in-
formation about the mineral component of bone as a function
of cellular activity, tissue age, disease, and therapeutic inter-
vention. 
A major breakthrough was the development of spectroscopic
parameters that enabled for the first time the monitoring of two
of the major collagen cross-links (pyr and deH-DHLN) in thin,
histologically stained bone sections, allowing the monitoring of
the variation in their spatial distribution as a function of
anatomical location, cellular activity, and tissue age (116).
As informative as it may be, FTIR microspectroscopic analysis
on instruments equipped with a single infrared detector was a
time-consuming proposition as analysis of a single section re-
quired 2-3 days. The fairly recently available combination of an
infrared focal-plane array (FPA) detector and a FTIR micro-
scope is a powerful one for obtaining spectroscopic images
with unprecedented image fidelity (125-128). The advantage of
this technique lies in the fact that the spectra acquisition and
processing time is shortened at least 1000-fold compared with
conventional IR microspectroscopy. Use of a step-scanning
FTIR spectrometer with an MCT array detector placed at an
image focal plane of an IR microscope enables areas 400x400
µm2 to be collected in less than 3-4 minutes at a spatial resolu-
tion of ~6.3 µm. To date, it has been successfully applied in the
analysis of cell cultures, and bones from animal models and
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humans (116, 117, 129-144).
Infrared microspectroscopy, bone strength & osteoporosis

Infrared microspectroscopic analysis of bone tissue from ani-
mal models and humans at equivalent anatomical locations
gave great insight to the role of bone quality in determining
bone strength (110, 112, 113, 115, 122, 124, 126, 132-134,
145). It became feasible to conclusively show differences in
bone mineral maturity between normal and osteoporotic bone
at equivalent anatomical locations (110, 112, 113, 122, 124). 
Even more revealing was the analysis of the spatial variation in
pyr and deH-DHLNL collagen cross-links in the same bones. It
was shown that the ratio between these two major collagen
cross-links was very different when osteoporotic and normal
bones were compared in the area of trabecular bone with ac-
tively bone forming surfaces (141, 143). These data are in ex-
cellent agreement with recently published clinical observations
that homocysteine blood serum level were elevated in patients
with increased fracture risk (146-148). It is interesting to note
that these differences were also observed between normal,
and bone biopsies obtained from pre-menopausal women sus-
taining spontaneous fractures while having normal BMD and
biochemical markers (143), suggesting that this might be a
common factor / cause of fragile bone.
The effect of therapeutic protocols on bone quality has also
been investigated (114, 115, 118, 121, 139, 140, 144). During
these studies, it was discovered that when fracture risk and
BMD were divergent, both mineral maturity and pyr / deH-
DHLNL collagen cross-link ratio was correlating with fracture
risk rather than BMD (137,144), further emphasizing the contri-
bution of bone quality to its mechanical performance.

Future directions

Since the introduction of the Infrared Microspectroscopic analy-
sis in the early 1990’s, the debate rages whether it is a diag-
nostic tool. Although it provides a plethora of useful outcomes,
it is our opinion that it is not well suited to be employed as a
mass-screening tool, for the simple reason that it is an invasive
technique as a bone biopsy is required. On the other hand, it is
ideally suited for cases of fracturing patients whose “classical”
risk indicators such as BMD and biochemical markers are nor-
mal (144). 
On the other hand, it is a powerful research tool, affording
unique insights into the pathophysiology of musculoskeletal
diseases such as osteoporosis, osteogenesis imperfecta,
Paget’s disease, osteomalacia, ostepetrosis, osteosclerosis,
etc. Its outcomes complement ones obtained through analyses
such as histology, histomorphometry, biochemical markers,
blood analysis, and BMD measurements, to provide detailed
information on the mechanisms that result in healthy and dis-
eased bone. 
It is also a useful technique in deducing the changes in the
spatial distribution variation of the mineral crystallite maturity
and pyr and deH-DHLNL collagen cross-link ratio induced by
various therapeutic protocols (114, 115, 118, 121, 139, 140,
142, 144), therefore it may be used in the future not only for
evaluating the various therapeutic protocols but also assist in
the design of more targeted ones.
Despite that both bone mineral crystallite maturity and pyr /
deH-DHLNL collagen cross-link ratio have been shown to cor-
relate well with bone strength, no calibration curve exists as all
the cases reported thus far in the literature involved normal
(100%) and diseased / fragile bone (0%). Since both mineral
maturity and collagen cross-links do change long after they
have been synthesized and deposited by the osteoblast as a

consequence of tissue aging, establishing the threshold in the
change in these two outcomes that results in mechanically in-
ferior bone will be important as it will provide the calibration
curve upon which bone strength may be predicted (when com-
bined with the outcomes of other analyses), and help us dis-
cern between aging and disease.
One of the major advantages of Infrared Microspectroscopy is
that it can describe the spatial variation of pyr and deH-DHLNL
collagen cross-links in mineralized thin tissue sections. These
are only two of the major collagen cross-links and as a result
only a partial understanding of the spatial and temporal distrib-
ution of collagen properties has been achieved. In the future,
spectral and mathematical methods should be combined so as
to derive spectroscopic parameters that describe all of the
known collagen cross-links, as they are important both in the
mineralization initiation cascade of events, and in determining
bone strength.
The main outcomes of Infrared Microspectroscopic analysis
correlate well with bone strength but are not the sole determi-
nants. Moreover, a review of the literature reveals that the vari-
ation in material and structural properties of bone is in the 1-10
µm range. It is necessary then in the future to combine Infrared
Microspectroscopic analysis with other techniques capable of
analyzing thin bone tissue sections with similar spatial resolu-
tion such as quantitative backscatter electron imaging (provid-
ing information on the bone mineral density distribution at the
mm level) (28, 41-45), small angle x-ray scattering (proving
precise information on the mineral crystallite size, shape, and
alignment to the collagen fibers) (22, 26, 27, 29, 34-37, 149,
150), and nanoidentation (providing information on the bone
mechanical properties at discrete anatomical location with a
spatial resolution ~ 1 µm) (151, 152), at carefully selected
(based on histology / histomorphometry to include cellular ac-
tivity as a selection criterion) identical anatomical locations so
that the contribution of each outcome to bone strength may be
calculated. 
In conclusion, Infrared Microspectroscopy has proven to be a
powerful tool in the establishment of parameters contributing to
bone quality and thus bone strength. Nevertheless, more spec-
troscopic parameters describing the organic matrix should be
derived in the future, and quantitation of these against bone
strength should be achieved.
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