PROTECTIVE ACTION OF CLODRONATE ON OSTEOARTHRITIC CARTILAGE


1 Department of Internal Medicine, University of Florence, Florence, Italy
2 Department of Clinical Physiopathology, University of Florence, Florence, Italy

Bisphosphonates enhance bone mass and prevent bone resorption in patients affected by chronic inflammatory and degenerative arthropathies. In details, in animal models, clodronate shows an anti-inflammatory effect and decreases cartilage damage. In patients with rheumatoid arthritis, clodronate decreases plasma levels of proinflammatory factors secreted by synovial macrophages.

Since a few informations about clodronate action on chondrocytes are available, we studied the effect of clodronate (1 µM - 1 mM) on human articular chondrocytes from cartilage of osteoarthritic patients. Biological and molecular effects of clodronate have been evaluated as follows: - Proliferation and viability by cell counting and Trypan Blue staining. - Apoptosis by chromosome ladder analysis and Hoechst 33342 nuclear staining. - Mucopolysaccarides production by PAS reaction. - Metalloproteinases 9 (MMP9) and TIMP-1 expression by quantitative Real Time-PCR. - Intracellular ATP evaluation by chemoluminescent luciferase assay. - Osteoprotegerin (OPG) and RANK-Ligand (RANK-L) release by ELISA test on culture media. - Collagen I and II expression by Reverse Transcratase-PCR and Real Time-PCR. Higher doses of clodronate inhibit cellular proliferation and maintain >80% cell viability along 6 days of incubation. Cell number decrease was due to apoptotic events, as evidenced by chromosomic ladder and picnotic nuclear fragmentation (10% for 100 µM and 13% for 1 mM clodronate versus 5% of control). MMP9 expression is strongly reduced while OPG and RANK-L release is not altered. Clodronate doesn’t affect mucopolysaccarides production. Intracellular ATP significantly increases in the presence of 10 µM of clodronate, when compared to control (26.92±0.23% of increase). Collagen I and mainly collagen II expression are significantly enhanced after incubation with clodronate. These results show that clodronate acts on chondrocytes promoting a protective and regenerative action on osteoarthritic cartilage.