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Abstract

New high resolution seismic data (Subbottom Chirp) coupled to highutiesoMultibeam
bathymetry collected in the frame of the Stromboli geophlystsgeriment aimed @
recording active seismic data and tomography of the Strondbatid are here presented. T
Stromboli geophysical experiment has been already carried oetl s onshore ar
offshore data acquisition in order to investigate the deep struatdréha location of th
magma chambers of the Stromboli volcano. A new detailed swatiinhetity of Strombol
Island is here shown and discussed to reconstruct an up-to-date motipyrodiey ang
marine geology of the area compared to the volcanologic settiig @éeolian Arc volcani
complex. Due to its high resolution the new Digital Terrain Modeghe Stromboli Islang
gives interesting information about the submerged structure ebtbano, particularly abol
the volcano-tectonic and gravitational processes involving the submitaimes of theg
edifice. Several seismic units have been identified based ogetiiegic interpretation ¢
Subbottom Chirp profiles recorded around the volcanic edifice and irttesafpas volcani
acoustic basement pertaining to the volcano and overlying slide clomaties emplace
during its complex volcano-tectonic evolution. They are related to rigive activity of
Stromboli, mainly poliphasic and to regional geological processesvingothe intriguing
geology of the Aeolian Arc, a volcanic area still in actiatyd needing improved resea
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Introduction

New high resolution seismic data (Subbottom Chirp) coupled to higlutiesoMultibeam
bathymetry collected in the frame of the Stromboli geophlystgeriment aimed at
recording active seismic data and tomography of the Stromkeoidisre here presented and
interpreted to improve the geologic and volcanologic knowledge of thaéryan offshore
around the Stromboli volcano.

Preliminary results on the Stromboli geophysical experimentiedaout based on onshore
and offshore data acquisition around the Stromboli volcano and finalizestaastruct a
seismic tomography of the volcano and to investigate the daepuse and the location of
the magma chambers have been already shown (Marsella et al, 2007h; Castellano et
al., 2008). A detailed swath bathymetry around the Stromboli volcanoeeasrecorded and
is here presented during the oceanographic cruise STRO-06 (RAat)December 2006).
Subbottom Chirp profiles have also been acquired according to a lsspgabed grid
perpendicular and radial with respect to the volcanic edifice (Figure 1).

Figure 1 Navigation map of seismic profiles recorded in the oceanographic cruise
STRO-06 of the Stromboli island.

During the Stromboli geophysical experiment, wide-angle retraceismics was performed
all around the Stromboli volcano by a 4 GI-GUN array (property SRGAMC, Naples,
Italy). The permanent seismic network of the National Institote Geophysics and
Oceanography (INGV, ltaly) has been used, incremented for theireepé of 18 temporary
stations and 18 Ocean Bottom Seismometers (OBS), deposited onoutteastern,
southwestern and northeastern submerged flanks of the volcano aftdteddeta
morphobathymetric analysis (Di Fiore et al., 2006; Marsellal.e2007a; Castellano et al.,
2008). Due to its high resolution, the new DTM of the Stromboli islan&, presented gives
interesting information about the submerged structure of the volcaniwutaaty about the
volcano-tectonic and gravitational processes involving the submarine flankseafifibe.

Geodynamic setting of the southern Tyrrhenian basin

Evolution of the Tyrrhenian-Apennines system

The irregular conformation of the African and Euro-Asiatic conti@entargins, with the
interposed Adriatic microplate (Panza et al. 1980; Pontevivo and R@@2a has given very
complex the geodynamics of the Mediterranean region (Figuren2jhd Middle-Late
Cretaceous (about 80 My B.P.) the opening of the Atlantic Ocean hesmded an
inversion of the relative movement of the African plate with eesfo the Eurasiatic one and
has produced as a main result the closure of the Thetys ocean.othsspof closure ended
in the Eocene with the Alpine orogenesis (Dewey et al. 1973).



Figure 2 Structural sketch map of the Mediterranean area (modified aer Marani and
Trua 2002. Red lines with filled triangles represent thrust fronts. Ké&y. Vavilov Basin.
MB: Marsili Basin.

Starting from the Oligocene the phases which have determinedetenpday configuration
of the western Mediterranean reflect a progressive migratiorthef Adriatic-lonian
lithosphere in the frame of a complex subduction system, migratstyvards (Malinverno
and Ryan 1986; Figure 2). From the end of the Oligocene and thenimegof the Miocene
(about 26 My B.P.) the extensional phases, to the west of the trench in the badeaahaee
produced a rifting of the Ercinian crust of the European foreland;hwhias given origin to
the opening of the Ligurian-Provenzal Ocean, with a counterclockwisgorobf about 25°-
30° of the Sardinia-Corsica block, happened from 30 and 16 My B.P. (Van der998p.
During this period the first compressional phases of the Apenninic orogengfsesiyduring
which the more internal tectonic units moved eastwards overlyinguteemost ones. In the
Early-Middle Tortonian (about 12 My B.P.) another compressional tecfurase verified,
during which the uplift of part of the central Apennines happened.

The opening of the Tyrrhenian basin started from the Late Tortoniarayprocess of rifting
which began along a N-S direction next to the eastern margin &atienia-Corsica block
(Lavecchia 1988; Sartori 1989). During the Plio-Pleistocene, thensateal process
migrated eastwards superimposing, during space and time, to theessiopal tectonics
involving the Apenninic nappes during their progressive advance towhaed#driatic
foreland. During recent times the Apennines thrust and fold bigltasmpression along the
outer front, while along the axis of the chain prevail extensitmdis, whose dislocations
have generated the most important earthquakes of the Apenninic Istiggo Nazionale di
Geofisica e Vulcanologia 2005).

From the Pliocene to the Pleistocene a set of compressional pfeEsescompanied the
superimposition of the most inner tectonic units on the outer secttrs #idriatic foreland.
The orogenesis has determined a large scale flexure, gradugthting eastwards, with the
consequent formation of the Apenninic foredeep, consequently involved inditespes of
thrusting. The present-day foredeep is named the Padan-Bradaneefoi@a is located on
continental crust and includes Plio-Quaternary sediments for anlloveckness of 9 km
(Royden 1993). The Apenninic orogenesis has produced a crustal shodkmgga E-W
direction, not uniform along all the chain. This different kinematics determined a not
uniform curvature of the Apenninic ridge, which can be distinguished irséetors (Figure
3): the northern Apennines showing a concavity towards the Tyrrheniaexseads from the
Monferrato to the Latium-Abruzzi region; the southern Apennines, th@mrMolise-Abruzzi
region to the Basilicata region, which doesn’t show an evident curvataréhe Calabria-
Peloritani Arc, with a greater curvature and concavity towdred yrrhenian sea (Patacca et
al. 1989; 1990; Doglioni 1991).



Figure 3 Sketch map of the main structural elements of the ItaliarPeninsula (modified
after Marani and Trua 2002. The line with the white triangles represents the outer front of
the Apenninic-Maghrebide orogenic system. The line with the blaakgles traces the
continuous overthrusting along the northern Apenninic Arc. The undulatedrioiieate the
main extensional faults which characterize, starting from tlestBcene the southern
Apennines and the Calabrian Arc. The dotted areas represent thanApuéland (located in
the Puglia region) and the African foreland (located in the nortSeiliy). On the map the
main hypothesized tectonic lineaments have been also represented:- TAormina line;
SAN — Sangineto Line;VB: Vavilov Basin; MB: Marsili Basim@dified after Marani and
Trua 2002).

The Northern Apennines represent an anomalous zone with respect tSotileern

Apennines, since it had a different evolutionary zone. In fact, itssgere related to the
Alpine orogenesis, for the most part included among the Sangigtoahd the Soverato-
Capo Vaticano fault and to the evolution of the Maghrebids, for thersbetween the
Soverato-Capo Vaticano fault and the Sicily (Boccaletti et 1890). The northern and
southern sectors are put in contact along a tectonic lineamentittma®occamonfina line,
which represents a boundary between two domains with a different kinematics.

The opening of the Tyrrhenian sea

Regarding the evolution of this part of the Mediterranean sewgeabhysical and
geodynamic models have been purposed, which evidence the complex evofuttos
sector.

The extensional phases, started about 30 My B.P., in the Ligurian-Bab\easin and then
continued in the Tyrrhenian basin, happened in an episodic manner inral gatiéng of
continental collision. The two extensional phases are separated) dhewn by about 5 My
B.P. and their opening is strictly linked to the African lifhlosre subducting towards W-
NW.

In the Central Mediterranean the first evidence of the subductidmedhdriatic microplate
started at the beginning of the Paleocene (about 60 My B.P.) watbdcurrence of flysch
deposits and high pressure and low temperature metamorphism (&olale998). During
the Oligocene (about 32 My B.P.) the first indications on the gewdiynevolution of the
area come when volcanic arcs form in the area Sardinia-Peavimecextension starts at the
back of the Apenninic accretion wedge (Beccaluva et al. 1989).

Between the Oligocene and the Early Miocene it beginstiagiphase, starting to the
formation of the Ligurian-Provenzal Basin and to the rotation of 25°-30° in a
counterclockwise sense of the Sardinia-Corsica block with an avesdgcity of extension

of the back-arc basin of about 3—4 cm/year (Van der Voo 1993).

The extension and the subsidence happened during the Late Tortonitredigginning of a
new episode of expansion. The lithospheric rifting causes the separithe Calabria block
and begins the opening of the southern Tyrrhenian basin leavingoatkshe Sardinia and
Corsica blocks. After about 5 My B.P., contemporaneously to thellatefaof the Calabria
block, a new process of rifting starts, testified by the #yndeposits in Sardinia and
Calabria (Sartori 1989; Sartori et al. 1989 ). New oceanic crussforto two separate basins
(Bigi et al. 1989), first in the Magnaghi-Vavilov basin (4-5 My B.&hd then in the Marsili



basin (< 2 My B.P.). These ones are considered as small backsars, lieeing linked to the
occurrence of the lonian lithospheric slab, subducting towards NWa(Viand Trua 2002;
Figure 4).

Figure 4 Sketch map showing the subduction of the lonian lithospher (modified after
Marani and Trua 2003. The location of the Marsili ridge, Aeolian Arc and Calabrés h
been also indicated. An abrupt increase of the rollback due to the Velbgenent of lateral
tears in the lonian slab, between Early and Middle Pleistoceneatenéhe lateral flow of
deep asthenosphere around the slab margins. The dotted line correspahéscrustal
thickness of the Tyrrhenian plate.

After the development of these back-arc basins, the volcanism afotltbern Tyrrhenian
basin is migrated from W to SE, from the Sardinia to the prekmntAeolian Arc (Serri
1997; Kastens et al. 1988; Bigi et al. 1989; Sartori 1989; Savelli, 28@%gloping the
present-day configuration of the Marsili back-arc basin. The geerate of opening of the
southern Tyrrhenian basin during the last 5 My B.P. is of about 6 cm/y (Malinverno and Ryan
1986; Patacca et al. 1990).

During present times the lithospheric structure shows two thinnéoineegf oceanic crust
(30—40 km) separated by lithosphere relative to the Sardinia contibéottklthick about 80
km (Faccenna et al. 2001); moreover, the basin is characterizedrogtal thinning, which
reduce more and more up to less than 10 km in the sector towards SE (Panza et al. 2003).

The correlation of the data on the lithospheric thickness with thnes wegarding the
distribution of the heat flow in the Tyrrhenian region (Erickson 1970; hilngon et al. 1985;
Mongelli 1991; Mongelli and Zito 1994) has evidenced that the Tyrrhesgancan be
divided into three parts: the northern Tyrrhenian sea, the centrgiefyan sea and the
southern Tyrrhenian sea. The southern Tyrrhenian sea is the widestiramebt part and
shows the deeper parts of the basin (more than 3500 m). To the southtbéstarea the
highest values of heat flow have been recorded (Morelli, 1970). Thealcgatt of the

Tyrrhenian sea shows the lowest values of the heat flow (Zitd. 2003). In the basin
located northwards, in proximity to the Tuscany, the heat flow satwe very high (160
mw/maq).

This trending of the heat flow seems to be linked to the activenaiégm occurring in the
Tyrrhenian basin and then to the subduction rate of the lithosphdriagrsfact, in the part of

the Calabrian Arc where there is a faster retreatinggpag extension of the lithosphere may

be observed, coupled with high heat flows. On the contrary, in the southern Apennines, where
the retreating of the subduction system is very low, active volcaisidatking, extension

rate is minimum and the heat flow is low. In the central-northgoenAiines, where the
subduction is faster, there are active seismicity and magmatidatium and Tuscany and

high heat flows.

Geodynamic models on the extension of the Tyrrhenmsea

In order to explain the geodynamic evolution of the Mediterraneanaar@ in particular, of
the Tyrrhenian-Apennines system several evolution models have fagposed, through
which the observed structural complexities should be explained.



The main aspects which have to be considered in a general motlet aeéative movements
between the African and European plates, the coexistenaampressional and extensional
regimes, respectively on the outer and inner fronts of the Apendnam, the eastward
migration of the above mentioned tectonic regimes, the distributiolnea$dismicity along

the Apenninic Arc, the geochemical and petrological chaiatitsr of the Tyrrhenian and
peri-tyrrhenian magmatism, the thermal flux and the palaeomagnetic evidence

The geodynamic model developed by Malinverno and Ryan (1986) implies hbat t
Tyrrhenian-Apennines system evolved in relationships to the wektswdrduction of the
Adriatic-lonian lithosphere. The arc-trench system should progregsivigirate eastwards
(roll-back) due to the sinking of the subducting plate. In this modelmain assumptions
exist, the first one that the lithospheric plates have a plashavior, the second one that the
evolution of a subduction zone is linked to the ratio between the veloicitpnvergence
among the plates and the velocity of retreatment of the oustihg plate. The geodynamic
evolution of the Tyrrhenian-Apennines system should then triggered sothkeastwards
retreating of the subduction zoriEigure 5; Malinverno and Ryan 1986). The described
model explains some most characteristic aspects of the TyarhApennines area, such as
the radial geometry of the Apenninic and Maghrebide chains withategpéhe Tyrrhenian
basin, the contemporaneous verification of a compressional regime stress onrtfrerauté

the chain and extensional in the back-arc zone (Frepoli and Amato 188 &Qulduction
under the Calabrian Arc (Amato et al. 1997) and finally, the kka&itae composition of the
Aeolian volcanism (Barberi et al. 1974; Beccaluva et al., 1994admn the geochemical data
demonstrate that the magmatism of the Aeolian islands is congpaiilbl a mantle having a
composition between MORB (mid-oceanic ridge basalt) and OIB (aresland basalt)
enriched of fluids and in some cases also of sediments derived feuhdacted oceanic
crust.

Figure 5 Sketch diagram according to the geodynamic model of Malinverno anRyan
1986(modified after Malinverno and Ryan 1989. 1: the evolution of the arc-trench system
(A) is related to the velocity of the slab retreatment @l to the dipping angl®) In a
fixed reference system with respect to the subducting gBj}ethe velocities which
determinate the tectonic style are: vc (velocity of convezgemong plates), v'r (velocity of
retreatment of the overthrusting plate). When the convergence doesistofve = 0) it
verifies extension in the overthrusting plate in order to balaheergtreatment of the
subduction(C); 2) development of a basin, reflected by the outwards arc moigrat:
continent; 2: continental margin; 3: oceanic sector; 4: active subdumtne; 5: subduction
zone not still active. The stagAsB andC indicate the time evolution.

Another geodynamic model of the Tyrrhenian-Apennines system has besvsgulirby
Doglioni et al. (1999), based on an active subduction in the orogen@rsyaccording to
this model, the Tyrrhenian sea is interpreted as a back-ane, lit its asymmetric shape
could be the expression of an astenospheric push on a laterallygeetwas lithosphere.
The lithospheric flux proceeding eastwards is responsible of botfetiieating in the same
direction of the arc-trench system and of the uplift along the Apenninic chain.

Seismicity of the Tyrrhenian-Apennines system

The seismicity of the Italian Peninsula is characterizeahlgnby a shallow seismicity under
the Apennines, a region of deep crustal seismic events eastwadhdsAgfenninic chain and
sub-crustal earthquakes under the northern Apennines and the Calabr{@hiarabba et al.



2005). As a consequence, three main sectors, well distinguished feaema-gectonic point
of view, may be defined, i.e. the Northern Apennines, the Southern-CAp&ahines and
the Calabrian Arc (Amato et al. 1997).

The Northern Apennines has a seismicity with maximum hypocentral depthsngthe 90—

100 km (Amato et al. 1997). The verification of sub-crustal earthquak#s,epicenters

located northwards of the 43° of latitude and to the south-west ofhdi@ exis, has

suggested the occurrence of a subducting plate under the northern Apd@aivaggi and

Amato 1992). The crustal seismicity is widespread along all thgeaic axis and occurs in
the inner part of a belt wide about 50-70 km perpendicular to the chaesmanding to the
maximum topographic heights (Amato et al. 1997).

In the Southern-Central Apennines there is only a crustal s#ignrelated to extensional
structures (Amato and Montone 1997) and concentrated along a belt, wideB@bb60tkm
and NW-SE trending (Amato et al. 1997).

In the Calabrian Arc a sub-crustal seismicity has beemlyneecorded with hypocenters
reaching 450 km of depth (Giardini and Velona 1991; Selvaggi and Chiara@baAlBato
et al 1997). On the other side, the shallow seismicity showgswath a magnitude greater
than 4.5 and a component of compressional deformation localized along tiermaodast of
the Sicily. The shallow events are clearly confined to the wiethe Aeolian Archipelago
and appear scattered and rare in the western part, while ¢neeédiate and deep seismicity
is confined to the west of the Aeolian islands (Pondrelli and PitorB@D3). The seismicity
of the last twenty years shows the existence of a subductionarfiodehosphere under the
Calabrian Arc; it defines a Benioff plan thick 40-50 km, wide 200 kmNanvddipping with
an angle of 70° up to depths of 400 km (Holcomb 1989; Amato et al. 199&nteuet al.
1999; Chiarabba et al. 2005).

Tomographic interpretation of the southern Tyrrhenian basin.

The Southern Tyrrhenian basin has been the subject of many tomogsaghes aimed at
reconstructing the lithospheric structure under the sea. Tiess of seismological images
allow to define the velocity anomalies of the P waves underttidy sirea, translating in the
spatial definition of the lateral heterogeneities existinghm lithosphere and in the upper
mantle in terms of fast and slow zones with respect to aerefe velocity model. The first
ones are interpreted as colder and denser materials with retgpebe surrounding
environment and usually associated with subducted lithospheric remrrentsedond ones
are instead interpreted as hotter and less dense bodies, whigypiaed éxpressions of
melted volcanic materials or, at sub-crustal depths, of astenospluees (Hirahara and
Hasemi 1993; Piromallo and Morelli, 1997).

All the tomographic models have evidenced a high velocity zone, intdpe the
subducting lonian slab NW dipping (Cimini 1999, 2004; Lucente et al. 1999; Montuori
2004). The slab shows an evident vertical continuity with a high isioreangle (70°-75°)

in the first 400 km of depth, where it is concentrated the most p#re afeep seismicity and
becomes sub-horizontal at greater depths. In the model of Montuori (2004), obtainetgby usi
for the first time teleseismic events recorded by submatatens, is well reconstructed the
lateral extension, which results to be of 200 km under 150-200 km of depthjtwedaces

to 100 km at shallower depths.



The high velocity zone is laterally surrounded by low veloabnes in all its vertical

extension, which are interpreted as astenospheric fluxes nextdolitiecting plate, or as the
trace of convective cells determined by the subduction (Figure M@yeover, the

correspondence between the low velocity zone and the Aeolian Arcatesli that the
subduction has generated the volcanism observed in the region (Montuori 2004).

Figure 6 Tomographic profile across the Aeolian island (modified afteMontuori 2009

a: AA’ profile across the Aeolian island; b: perturbations of velocity anomalies across
the AA’ profile. It is worth noting the occurrence of a high velocity continuous body,
reaching values of perturbations of 5%, NW dipping with an angle e739°up to 400 km;
under this depth the body assumes a sub-horizontal shape. The ssienmg (yellow dots)
are reported on the section if they happen since 50 km from theciiooj plan. The deep
seismicity is concentrated in the inner of this structure. Zonpsoobunced low velocity are
well evident along all the model and border the whole fast structure.

The Aeolian islands

The Aeolian Arc is a volcanic structure, long about 200 km locatdteimher margin of the
Calabrian-Peloritan Arc. The arc is formed by seven emerge@nioledifices (Alicudi,

Filicudi, Salina, Lipari, Vulcano, Panarea and Stromboli) and by several Snbraalcanoes
surrounding the Marsili basin. The structural elements and the volaetnty in the area
allow to identify three distinct sectors: the western se@bcudi and Filicudi); the central
sector (Salina, Lipari and Vulcano) and the eastern sector @2aaad Stromboli; Marani
and Gamberi, 2004a, 2004b; Bortoluzzi et al. 2010).

The oldest volcanic activity of the Aeolian Arc is dated back &atMy B.P. and conceals the
Sisifo submarine volcano, located in the western sector of the degfopédNow the only
emerged volcanoes which may be considered still active are Stromboli, Vulcanipand L

The type of volcanism of the Aeolian Arc is of convergence batw#ates and the islands
pertain to an arc-trench system, resulted from the collisioweret the African and

Eurasiatic plates, with the occurrence of a subducting slab NWhdipmider the Tyrrhenian

sea (Barberi et al. 1974).

In the Aeolian volcanism, active from about one million of yeansy eruptive phases
separated by a period of quiescence in the Late Pleistocapebendistinguished (Keller
1974). During the first phase the islands of Alicudi, Filicudi, Peaakipari and Salina have
been formed. During the second phase the completion of these lagehappened and the
birth of Vulcano and Stromboli (Barberi et al. 1974).

Regarding the chemical composition of the erupted products, a timatiemomay be
observed which can be resumed in three series with increasingtsanit@otassium (Barberi
et al. 1974). They are the calcalkaline series (basaltsrridhand dacites), corresponding to
the oldest products, the andesitic series, rich in K (Lipari ara®bli) and the shoshonitic
series (shoshonitic basalts and rhyolites), regarding the negsnht volcanic products
(Vulcano, Lipari and Stromboli).

A magmatic chamber at 2 km of depth is located under the sea botparating Lipari
from Vulcano and the constant low values of the Sr isotopicnidieate that the magmas are
sub-crustal in provenance and not involved by phenomena of crustal coni@miffde



shoshonitic nature of the most recent volcanoes indicates, moreover, that shie &sclatest
stages of evolution (Keller 1974; Sigurdsson 2000; Vidal and Merle 2000).

The nature of the submarine volcanoes is compatible with the hypotifesmms expanding
marginal basin; in fact, they are composed of basaltic volcanmebably related to
extensional fractures having a NW-SW trending, with tholeitic prisdat their base and
alkaline products in the highest parts (Barberi et al. 1974).

Stromboli

Stromboli is the northest island of the Aeolian archipelago an@rasea of 12.6 kinThe
volcanic edifice, localized at a latitude of 38.8°N and a longitude of 15é)fErges of 924
meters above the sea level and extends up to 3000 m under theeteésléop is composed
of two crests having a half-moon shape: the outer one is named “dbNVam¢hile the inner
one is known as “Pizzo sopra La Fossa” (Figure 7). Both the @esthe remnants of old
volcanic edifices. The erosion has carved deep canyons along thedldipese old edifices
and a wide slope covered by the ashes of the recent activity extends from theawppkthe
volcano to the south-eastern one. The main onshore drainage systeatsbaween indicated
in the sketch map of Figure 7. The active craters are not lodatisdt@p, but at 100-150 m
under Pizzo Sopra La Fossa in a depression formed 5000 years 8.€orasequence of the
collapse of a part of the volcanic edifice (Figure 7). Theecsa still characterized by
volcanic activity are now three and their set is defined &srace, a structure continuously
changing and in gradual increasing upwards. The lava flows rurrdsvea large valley
dipping seawards, up to water depths of 1700 meters (Romagnoli ed3). t9s located on
the NW side of the volcano and is named Sciara del Fuoco and waelifdrra to large rock
falls and flows (Pasquaré et al. 1993; Figure 7).

Figure 7 Location map of the Stromboli island, reporting main localitiesof the volcanic
island onshore. The red lines indicate the main crateric rims of the Stromimmtanic
edifice; the black lines indicate the main reliefs of thenjahe blue lines indicate onshore
drainage axes. The location of the Sciara del Fuoco lava flow has also beatethdic

The emerged part of the Stromboli strato-volcano is mainlyddrduring two distinct cycles
of activity (Barberi et al. 1974). The old cycle is composed othrhic eruptions of
pyroclastic materials and lava flows, giving rise to thenttion of all the eastern sector of
the island. The recent cycle, during which lava flows have heemly erupted, is
responsible for the formation of all the western half of thersioli island. Now the recent
cycle continues with the activity of the craters surrounding the Sciaraideb Fava flow.

Stromboli is one of the few volcanoes on the earth which has a contiauqis/e activity
with periods of few days or decades lasting for about 2000 yeaesp@isisting activity
implies a magmatic chamber of great dimensions supplied withnadgt and mainly
consisting in explosions of moderate energy (Barberi et al., 1998)eXjiosions last up to

10 seconds and repeat at intervals of about 10-20 minutes and are exbrinefttivio-
dynamical movements of the magma in the inner of the conduit (&edind Luongo 1997;
Chouet et al. 1999; Ripepe et al., 2001; De Martino et al. 2004). They inaobet of
fragments in the order of 30" kg (Chouet et al. 1974; Ripepe et al., 1993) and a gas
volume in the order of f0om® (Chouet et al. 1974). The sources of these explosions are
concentrated at a depth of 200 m about under the top of the craters (Ehaliel997;
Saccorotti and Del Pezzo 2000). This moderate activity has beemjtésl by episodes of



greater entity, accompanied by lava fluxes happened in the 1975 dCap@B), in the
December of 1985 (De Fino et al. 1988), in the 1993 (Bonaccorso et al. hé9iedast in
the December 2002 (Bonaccorso et al. 2003).

The last eruption of the Stromboli, started on the 28 December 2002, hasnbegated by
an increase of the explosive activity starting from the May 20@Rby the increase of lavas
in the craters from November, when from the northern flank of@ébersl crater a small lava
flow erupted, propagating in the upper part of the Sciara del F&bading from December
the explosions and the heights of the eruptions was particulagysmtin the first crater,
located to the NW, up to reach the 200 m with respect to the .cidtersame day, the
activity ended with the opening of an eruptive fracture NE trendiomg, about 300 m. The
opening of the fracture caused a shifting towards NW of the uppelguated to the SE of
the Sciara del Fuoco and the formation of small slopes paraltee direction of the slope
originated by the landslide which reached the sea generatisignami (Bonaccorso et al.
2003).

Previous marine geological studies

Many marine geological studies have been produced aimed at rectingt the slope
failures, deep sea deposits and other volcanological and geologicetsaspecealing the
Stromboli volcano. Some of them are enclosed in a book dealing with the-220X®
Stromboli eruptions (Baldi et al. 2008; Bertagnini et al. 2008; Bonforaé @008; Calvari et
al. 2008; Marani et al. 2008; Martini et al. 2008; Ripepe et al. 20@&|dii2001; Tibaldi
2008; Tinti et al., 2008; Tommasi et al., 2008).

On the December of the year 2002, following 17 years of an intesebgtliian activity and
gradual increasing in the frequency of explosions within the uppé&grsrof the volcano, a
long eruptive fissure opened in the north-eastern flank of the Strowddchno (Calvari et
al. 2008). The explosive activity fed hot avalanches flowing down tharé&Sdel Fuoco
towards the Tyrrhenian sea, followed by an intense emission . |A¥i®r a few days the
fractures formed along the Sciara del Fuoco caused the failure of twetatgas of the NE
unstable slope of the volcano (Tommasi et al. 2008). The landsliggsrad two tsunami
waves extending over 100 m inland, reaching the town of Milazzo ambttigern coast of
Sicily (Tinti et al. 2008). The sequence of landslides occurring sftenthe eruption and
invoving the NW flank of the volcano has been reconstructed (Tomrhasi 2008). The
landslides involved the north-eastern part of the Sciara del Fugge, iroducing tsunami
waves along the coasts of the island. The volumes of the masaesedefrom the subaerial
and submarine slopes have been quantified to compare the pre-slide gmastiséde
surfaces, obtained through aerophotogrammetric and bathymetrio deither to reconstruct
the geometry and the kinematics of landslides (Tommasi et al. .200@) integrated
subaerial and submarine morphological evolution of the Sciara del Fuerotted 2002
landslide has been reconstructed through digital photogrammetry @itidedm bathymetry
to obtain high resolution digital elevation model of land and sea-flodace of the NW
flank of Stromboli (Sciara del Fuoco depression; Baldi et al. 2008)miEnging of subaerial
and submarine data and the comparison of several Digital Elevabdel$has allowed the
estimate of the mass volumes involved in the failures and the magitad the
morphological changes induced by erosional and depositional procedsesolcano (Baldi
et al. 2008). The map of residuals obtained by subtracting the pre-arsligp@sdigital
models have shown that in its subaerial portion the slide isilated in two different slabs.
At the same time, shallow bathymetric surveys have redeal@ide sub-circular slide scar



and over 45 m deep, related to the tsunami event. The comparison of {peststide
DEMs let to know that the materials mobilized by the submatide & of about 9.3 x 0
m® (Baldi et al. 2008; Chiocci et al. 2008a, 2008b; Tommasi et al. 2008).

The submarine morphology of the Sciara del Fuoco valley has beamsteicted in detail
(Marani et al. 2008). Two submerged scarps delimit the shalloweopatia broad valley,
having a flat bottom. Beyond the 900 m of water depth the deep waterremargin of the
Sciara del Fuoco valley consists of an incision connected to tteereasargin that arches in
a northward direction down to 1700 m of water depth, diminishing in meltefdepth. The
landslide deposit consists of a proximal coarse-grained landslide depdise volcano slope
and of a distal sandy turbiditic deposit (Marani et al. 2008). Theirpabxdeposit includes
two facies; the first one is a chaotic coarse-grained depdsit the second one is a sandy
facies developing laterally over the coarse-grained deposit.

Several marine surveys were carried out offshore the Sder&uoco valley in order to
monitoring the Stromboli submarine slopes after the December 2002iden{Shiocci et al.
2008a). The morphological changes and the depositional processes) leadhe gradual
filling of the slide scar have been studied in detail. The dicher has been progressively
filled with lava and volcaniclastic debris. During the first moattl half the filling rate was
very high due to the entrance of lava flows into the sea and tmahghological change of
the slope; during the following months the filling rate decreaskédnwhe eruptive vents
moved upwards and the volcanic eruption stopped. After four years (ReBOG) the half
of slide scars were filled, but a new eruption occurred and alkteawas constructed in the
2002 scar, influencing the natural change of the slope. The morphologgoalstruction of
geometry and volume of scar filling during the period 2002—2007 evidenced a punctuated and
fast shift of the depocenters and the emplacement of debris depasitdy fossilizing the
landslide (Chiocci et al. 2008a).

High resolution bathymetric and backscatter maps offshore tbenlsdti island have been
presented, coupled with a geological interpretation of their volcastimictural and
sedimentary features (Bosman et al. 2009). The volcanic edifickaracterized by a sub-
conical shape, symmetric with respect to a NE-SW axis. Tieerdiions of the
Strombolicchio volcano, located to the NE of the Stromboli island, have rieeenstructed
by redrawing its morphology before the wave erosion. On the nasteraasubmarine flank
of Strombolicchio, a N64°E structural trend controls the shape @ttioenbolicchio canyon
(Bosman et al. 2009). On the southern side of Stromboli, the submarineh8ark radial
structural trend, possibly reflecting a volcanic stress regimaege-scale lateral collapses
have affected both the NW and the SE flanks of the volcano, producigg deebris
avalanche deposits (Bosman et al. 2009).

New detailed swath bathymetry and Sidescan Sonar data collectbd submerged flanks
of Stromboli, integrated with seismic data and seabed samplingieditat repeated lateral
instability processes occurred on the eastern flank of the wla@though no debris
avalanche deposits were known before the high resolution exploration o$etieed
(Romagnoli et al. 2009). This flank of the island is opposite to the n@stew side,
affected by repeated flank collapses and this setting is ewvademtstructurally-controlled
instability of the flanks of the volcanic edifice. Two large ec#teral collapses are
evidenced by a block field, cropping out on the middle-lower eastern sgéxingope and by
a chaotic unit actually embedded within the volcaniclastic sequahdee foot of the
submerged flank. A morphological continuity can be envisaged between thisrgelbinscar



and the inferred subaerial one. A spatial and temporal reconstruétipossible events is
also proposed. The chaotic debris avalanche unit, buried within the vassicielpron at the
slope base and partially reworked in its distal part within ttren®oli canyon floor is
thought to be the result of a lateral collapse event. The megalébddicén instead result
from a more superficial debris avalanche (Romagnoli et al. 2009).

Submarine portions of Stromboli volcano account for about 98% of the whelet eéftthe
volcanic edifice and are mostly covered by volcaniclastic sedgrtbat made up a modern
volcaniclastic apron (Casalbore et al. 2010). This apron shows avkigbility both across
and along slope of morphologies and deposits related to massgvastil reworking
processes, passing into areas covered by hemipelagic sediomentalarge spectrum of
erosional and depositional features was recognized on the swoffabe apron. On the
submerged shelves, shore platforms and depositional terraces submatimesf related to
wave action and sea level fluctuations are present, actingpdaostorage and reworking for
the volcaniclastic materials derived from the subaerial portibmsbidity currents acted on
the slope, generating erosional furrows and throughs, channeldengdexes and coarse-
grained sediment waves (Casalbore et al. 2010).

The most active area of the apron lies offshore the Sciarkuelo, on the north-western
flank of the volcanic edifice, where a large amount of coarseagtasolcaniclastic material
is deposited by turbidity currents. Distinct volcano-sedimentary afeéhe edifice have been
distinguished (Casalbore et al. 2010). The NW and SE portions of thebStrastand are
characterized by the emplacement of wide and thick debris avaldeguwsits, related to
large scale sector collapses, representing the most importastwaating processes making
up the apron. Such a deposits are interstratified within differenamclastic sequences and
can be eroded or fossilized by successive gravity flows. Thd resutomplex succession of
facies, where it is often difficult to depict an arranged sevsieprocesses. On the contrary,
the SW and NE flanks of Stromboli island are characterizedrhgra ordered evolution of
processes and deposits making up the apron, giving rise to a leptexastratigraphic
architecture (Casalbore et al. 2010).

Data and methods

The oceanographic cruise STRO-06 was carried onboard of the Raldrfiathe National
Research Council of Italy (Marsella et al., 2007a; Castelktnal., 2008). This ship is
normally used for geologic, geophysic and oceanographic work in td@evtanean sea and
adjoining waters. The R/V Urania is equipped with DGPS positionystes, single-beam
and Multibeam bathymetry and integrated geophysic and oceanagmdgtai acquisition
systems, other than water and sediment sampling. Additional equipoznt be
accommodated on the keel or towed, like Sidescan Sonars.

Navigation and positioning

The vessel was set up for Multibeam data acquisition and navidatiosing the PDS2000
software by RESON. The UTC absolute time was measured aoddeel at any shot
produced by the PDS 2000 by the Java Daphne software (StanghedliBogoluzzi 2004)
interfaced to a Trimble Acutime and to a Differential GlobakiRoning System (DGPS).
The hull-mounted 16 transducer Benthos Chirp system was used. The alatani
performance were controlled through the Communication’s TechnologfANFPRO



software. The Subbottom Chirp workstation received positions througgntance by the
PDS 2000; positions were therefore recorded on the XTF trace beasldatitudes and
longitudes of the DGPS antenna.

The instrumental offsets (PDS 2000) are presented in the Table 1 (Marsk|l2@2&b).

Table 1Instrumental offsets on the ship Urania based on the PDS2000 software

Position Across Along Height
Reference point 0.00 0.00 0.00
DGPS 1.64 14.30 14.18
MBEAM 0.00 14.36 -4.96
MAHRS 0.00 0.00 -3.40
ECHO SOUNDER 33 5.50 -1.85 -3.80
CHIRP -1.0 11.80 -4.00
A-FRAME 6.5 -6.70 0.0
STERN 0.0 -30.60 0.0
STRING-1 4.00 -60.30 -60.0
STRING-2 -4.00 -60.30 -60.0
GI-GUN ARRAY 0.0 -60.30 -6.0

The GPS antenna, representing the primary positioning system is locatedpmint DGPS.

Multibeam bathymetry

The acquisition of Multibeam bathymetric data was carried owugir one workstation
interfacing the RESON8160 Multibeam system. The adopted Multilsgatem was the 50
kHz, 150° aperture RESON 8160 Multibeam, having a range of 5000 m. Thehsadawvas
positioned on the skip’s keel using a V-shaped steel frame. A souncitygirobe at the
sonar head was directly interfaced to the processor of the Matiilsgstem, thus providing
the necessary real time data for the beam forming. In additieng&tasets were generated
and stored on separate computer for back-up of data on HD and CD/DVIPD$2000
software was able to build a 20 m Digital Terrain Model (DTM)ing the acquisition of the
bathymetry in the survey area. The existing Multibeam dateiietherefore be used for an
up-to-date regional bathymetric compilation.

The calibration of the Multibeam data has been carried out throughcthasition of some
lines. Heading and pitch values have been easily found, whereadllthialues have been
difficult to obtain due to the roughness of the sea bottom morphology.

CTD casts

The CTD casts were collected in the study area during tgeisation of Multibeam
bathymetry. The CTD data were recorded by using a Mod. 911BlHsp®filing system.
The position of the CTD stations is reported in the Table 2. Thelaaavwere recorded and
processed through the processing software respectively named SEASA SBEdata. The
sound velocity data from the acquired profiles were immediatagbpited into the PDS2000
software for the Multibeam data corrections. Moreover an examld Df data collected in
this cruise is shown in Figure 8. The location of the CTD stat®meported in the upper
right inset of the above mentioned figure (Figure 8).



Table 2CTD stations positioning in the Multibeam acquisition system

Station Data Time UTC Longitude Latitude
01 2006-11-28 22.25:42 15:13.42 38:52.25
02 2006-12-02 22:38:01 15:14.00 38:42.21

Figure 8 Data of the CTD cast SBE911 PLUS recorded during the STROO06
oceanographic cruise (modified after Marsella et al.20073. The location of the CTD
casts acquired in the STROO06 oceanographic cruise is reporteslnimap on the upper right
in the figure. The inset on the lower right of the figure repbessbund velocity diagram (sv,
measured in m/s). The inset in the upper left of the figure tegbe temperature (T,
measured in Celsius). The inset in the lower left of the figure reertsalinity (S, measured
in PSU).

Subbottom chirp

A largely spaced grid of Subbottom Chirp profiles has been dedort has allowed the
delimitation of the main units cropping out at the sea bottom, thgm#imm of the morpho-
structures and the calibration of the multibeam geologic intetga. The seismic grid,
radial with respect to the shoreline has been recorded on the ctaitslepe. The location
of the seismic profiles has been reported in a sketch navigationFigaipe(1). The map has
been constructed using a geographic information system (GIS)tingptne files related to
the navigation lines recorded onboard by the PDS2000 navigation program. Ehe
processing has been realized using the SEISPRHO softwareppukébr the elaboration of
seismic profiles (Gasperini and Stanghellini 2009). This program procdsesagforded in a
SEGY format and produces, as a final result, seismic seci®ristmap images. A time
variant gain (TVG) has been applied improving the quality of the seisignal and the
visualization of the scattered volcanic sequences.

Geologic interpretation particularly referred to volcanic geomorphology

The first phase of data processing and interpretation consited cartographic restitution
of the Multibeam data as bathymetric maps with contour isobathshalgd relief maps for
the geological interpretation of the main morpho-structural lieedsn The geologic
interpretation was carried out based on the recognition of the manpho-structures
cropping out at the sea bottom. The interpretation of high resolutionisgisofiles allowed
us to reconstruct the structural and stratigraphic setting of the contineptaksccessions.

The stratigraphic units belong to the Late Quaternary depogiseqaence (Catalano et al.

1996; Fabbri et al. 2002). From the Late Pleistocene to the Holocerspdbe and time
evolution and the lateral and vertical migration of the coastalneacontinental shelf and
slope depositional environments have been recognized in this sequéecstratigraphic
succession has recorded the variations of the accommodation spgheelLate Quaternary
deposits during the last™4order glacio-eustatic cycle, ranging in age between 128
(Tyrrhenian stage) and recent times (isotopic stage 5e; Stwackésmd Opdyke 1973,
Martinson et al. 1987).

The occurrence of outcrops of volcanic acoustic substratum at théosiean has not
permitted a classical stratigraphic approach applied takirag aotount the stratigraphic
relationships between the acoustic basement and the filling Thigssystems tracts of the
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Ky



Late Quaternary depositional sequence, being limited by tiamsgressive surfaces, may be
considered equivalent to the units bounded by unconformities (Unconformitye@d
Stratigraphic Units; UBSU; Chang 1975; Nummendal and Swift 1987;0Way 1989;
Sacchi et al. 1999).

The techniques and methods of modern volcanic geomorphology have been adopted and
taken into account in the geologic interpretation of the data callaotghe Stromboli
volcanic island (Grosse et al. 2012; Lahitte et al. 2012; Platk 2012; Procter et al. 2012,
Rodriguez-Gonzalez et al. 2012; Thouret 1999; Thouret and Nemeth 2012; llesrreical.

2012).

The significance of volcanic geomorphology has been improved througbutiditative
classification of volcanic landforms, which blends morphometry and stbedsesi on ground
observations, remote sensing data and laboratory experiments, as wWed diversified use
of airborne images and digital data acquired through radar antitesitghd combined with
the Digital Elevation Models data (Thouret 1999). The monitoring of maogieal changes
in volcanic areas provides a fundamental contribution to the comprehesfsine dynamics
of the volcanic systems both during the eruptions and in post-erupdiyesstThe rates of
geomorphological processes acting at all scales on volcanoes Iasrteasured to improve
the theoretical aspects of volcanic geomorphology (Thouret 1999). The poodacid
comparison of Digital Elevation Models is necessary to document amditgtisely describe
the morphological evolution induced by volcanic constructional and destrynteesses,
such as the emplacement of lava flows, calderic collapses avithgoaal instabilities. In
particular, for submarine areas, the acoustic techniques asutiibddm bathymetric surveys
allows to investigate the sea floor with an increasing detail and full coverage.

Large scale instability processes, erosional landforms and dabaienches present a
particular relevance in the case study of the Stromboli islanda Asnsequence of rapid
construction, many volcanoes are liable to massive flank or sldpeefaresulting from
structural instability. The slope failures have produced molaleisl avalanches, travelling
on long distances beyond the flank of volcanoes at high velocitiedes&ription of
geological processes involving the flank failures and the related depasiteen provided in
detail by several authors (Voight et al. 1983; Siebert et al. 198&fd€ll 1988; Glicken
1991; Moore et al. 1994).

Massive landslides create specific morphology and deposits, suobrseshoe-shaped re-
entraints of the volcanic edifice, such in the case of Isclaads|Chiocci et al. 1998; Aiello
et al. 2009, 2012) and high steep escarpments having an amphitheater shagebrihe
avalanches typically form a hummocky terrain with wateedildepressions and steep flow
margins and thick hummocky deposits with block and matrix faciesistong of unsorted
angular-to-subangular debris. A relationship exists between stende run-out travelled by
an avalanche and the failure volume.

As an analytic technique, the volcanic geomorphology can identifgatiementary facies
associations and the facies models for dynamic volcano-sedimaytigms and establish
the criteria for recognizing volcaniclastic deposits in old wuilcguccessions, inferring the
role of climatic and tectonic effects on transport and deposition aradyzing the
characteristics of sediment gravity flows to determine raelfeparameters for modeling their
behavior (Thouret 1999).



Results

Morpho-bathymetry and geology

The materials erupted by the Stromboli volcano, which shows a volcethi@dyaconstant
during geological time, slide on the surrounding slopes and deposie@ubmarine flanks
of the edifice, which are disrupted by submarine instabilitiesvi{gtive mass fluxes, debris
flows, debris avalanches, slides, rock falls, slumpings and er@sory channels). The
flanks of the Stromboli island are characterized by the occurmlieeaments of gravity
instability, frequent on the flanks of the volcanic islands (Chioceil.e1998). Proceeding
eastwards a chute of anastomized detritus occurs, generatbdrimellised fluxes of detritus
organized in transversal bottom lineaments. To the north of the islzamthalised fluxes act
on a flat sea bottom, characterized by a low reflectiviythe west it occurs the submarine
continuation of the “Sciara del Fuoco”, representing a main flavaalways active, which
can be followed for several kilometers before that it laterally joins tloen®wli canyon.

The Stromboli canyon represents one of the most important canfdhe Tyrrhenian sea
and links the shoreline of the Sicily with the Tyrrhenian battptaln surrounding the
Aeolian islands. The canyon receives channellised fluxes oiglisside (among them the
Gioia canyon) and mass fluxes on its left side (also on th&dlaf the Stromboli volcanic
island), where its thalweg touches the Aeolian volcanic archipelago.

A shaded relief image map of the Stromboli island has been coestrant interpreted
(Figure 9). The overall extension of the bathymetric survey isbmfut 910 krhin a
bathymetric range from 11 m to 2555 m. The Multibeam data giveimevesting evidence
to understand the morphological, volcanological and structural settirtheoStromboli
island, particularly referring to gravity instability procesdesusing on lateral collapses on
the flanks of the volcanoes.

Figure 9 Shaded relief image map of Stromboli island. The overall extsion of the
survey is of about 910 krin a bathymetric range from 11 m to 2555 mThe Multibeam
data give new interesting evidences to understand the morphologiadnological and
structural setting of the Stromboli island, particularly refeytio gravity instability processes
(lateral collapses on the flanks of the volcanoes).

The geological interpretation of the Digital Terrain Model loé tStromboli island shows
several main morphological lineaments (Figure 9). On the righhefidland it is worth
noting the occurrence of the Stromboli canyon, fed by a latdratary channel, draining the
volcaniclastic input coming from the submerged volcanic edifice oPtdrearea island. Two
main morpho-structural lineaments have been identified, one having dré&@ng and
another having NE-SW trending. The submerged flanks of the volcaniceedit dissected
by morpho-structural lineaments controlled by the activity of subra instability processes
along steep slopes. On the upper right side in the Multibeam nsypassible to see the
Strombolicchio plateau, located at water depths ranging between 5d ib@ m isobaths.
On the upper left side in the Multibeam map it is worth noteotioeirrence of the end of the
Angitola canyon, draining the volcaniclastic input coming from tbetinental slope off
Calabria.



A slope map of the Stromboli volcanic edifice offshore has been roctesd based on
Multibeam bathymetric data (Figure 10). The slopes of the upperesgbth part of the
stratovolcano are minor than 10°. A steep break in slope signs the passage to tharoweier
the volcanic edifice, showing slopes ranging between 10° and 25°. Th&ldps gradient

occurs in correspondence to the passage from the basal part of ibe, etidiracterized by
slopes ranging between 0° and 5°. Note that the margin of the submenjaes” (lava

flows), of the more pronounced channels and of the Stromboli canyon Sapes in the

order of 35°-40°.

Figure 10 Slope map of the submerged sector of the Stromboli volcanidiéce. Some
main morpho-depositional volcanic domains have been identified and redaséapes (see
the text for further discussion).

Detailed shaded relief maps of the south-eastern and south-weatd® déf the Stromboli

volcano have been constructed (Figures 11 and 12). The circles intledteation of the

three OBS stations used for a location of a refraction seisam@y carried out during the
cruise STRO-06 in a preliminary project phase. It is worth notiegbteak in slope which
signs the passage from the base of the submerged volcanic efltheeStromboli island and
the bathyal plain, located at around — 2100 m of water depths, gtaisage with the
volcanic edifice of the Panarea island. In the lower part ofigiuiee a detailed shaded relief
map of the south-western flank of the island is reported. The cirdesate the location of

six OBS stations positioned before the execution of the wide anfyictren seismics

(Marsella et al., 2007a; 2007b). Parasitic vents related to threwaksianic edifice have also
to be noted.

Figure 11 Detailed shaded relief map of the south-eastern flank of éhsubmerged part
of the Stromboli volcano constructed based on Multibeam bathymetry.

Figure 12 Detailed shaded relief map of the south-western flank dhe submerged part
of the Stromboli volcano constructed based on Multibeam bathymetry.

A shaded relief and contour map of the isobaths of the submerged vaddite has also
been constructed (Figure 13). On the right in the map of Figure 1&nbmboli canyon has
been identified, draining the volcaniclastic supply coming from thiemerged volcanic
edifice of the Panarea island. Two main morpho-structural lineamespectively N-S and
NE-SW trending have been recognized. The submerged flanks of tteniokdifice are
involved by morpho-structural lineaments controlled by gravitatiorshbilities along steep
slopes (Figure 13). In the upper right of the map the Strombolicchiegu has been
identified at water depths ranging between 50 and 150 m. In the @bpef the figure the
lower part of the Angitola canyon has been identified, draining fhamvolcaniclastic input
coming from the Calabria region (Figure 13). The northern flankh@fRanarea volcanic
edifice has been identified in the lower part of the Figure 13.

Figure 13 Shaded relief and contour map of the isobaths of the Strombosubmerged
volcanic edifice.

The constructed bathymetric profile ABCD (Figure 14) runs fer&d the break in slope
joining the steep upper part of the submerged volcanic edifice twitbwer part, having less
steep slopes. The AB segment crosses the submarine prosecutiorfSdidine del Fuoco”

lava flow and shows hints of an intense channelization, while theeB@ent is comprised



between two minima of water depths in the bathyal plain, crossileg@a channel located in
the north-eastern flank of the volcanic edifice, having a structararol (Figure 14). The
CD segment crosses the south-eastern flank of the submerged wveld#ice, characterized
by submarine gravity instabilities (Figure 14).

Figure 14 Bathymetric profile ABCD in the Stromboli offshore and relative location
map. The profile runs in the upper part of the submerged volcanic edifice.

The constructed bathymetric profile ABC runs along the soutlemaank of the Stromboli
volcanic edifice and crosses the Stromboli canyon (Figure 15)ABhsegment shows an
overall decrease of water depth proceeding from north to south anahs&eeral channels
with several order of dimensions (Figure 15). The BC segment shosexten of the
Stromboli canyon, having a flat thalweg and asymmetrical levees éFigr

Figure 15Bathymetric profile ABC in the Stromboli offshore and relative locaion map.
The profile runs along the south-eastern flank of the Stromboli volcanic edifice.

Interpretation of Chirp seismic data

A sketch map showing the OBS and shot locations around Stromboli hasohetmated for
a better visualization of the shots of the seismic data call@ttshore the island (Figure 16).
Some seismic profiles have been processed and interpretechgeterthe above mentioned
location map. Seismic processing consisted of a ri-lecture ismse data using the
SEISPRHO (software) allowing the generation of bitmap filestisy from SGY files of
seismic lines (Gasperini and Stanghellini 2009). The processed arpteted seismic lines
are listed in the Table 3.

Figure 16 Sketch map showing the Ocean Bottom Seismometers (OBS) and shot
locations around the Stromboli island.

Table 3Sketch table reporting the line names, the shot numbers and the seis source
of the collected data

Line name Shot numbers Seismic source

Chirp Stromboli canyon P 0-3118 shots Subbottom Chirp
Chirp_Stromboli_canyoo 0-6219 shots Subbottom Chirp
Chirp_Strombolil_est 0-360 shots Subbottom Chirp
Chirp_Strombolil_esu 0-6219 shots Subbottom Chirp
Chirp_Strombolil_esv 0-6219 shots Subbottom Chirp
Chirp_Strombolil_esw 0-550 shots Subbottom Chirp
Chirp_Strombolil_esx 0-962 shots Subbottom Chirp
Chirp_Strombolil_esy 0-947 shots Subbottom Chirp
Chirp_Stromboli_canyon 0-6129 shots Subbottom Chirp
Chirp_Stromboli_canyos 0-2213 shots Subbottom Chirp

Several seismic units have been identified based on the geoltagioretation of Subbottom
Chirp profiles recorded around the volcanic edifices and interpreteleanic acoustic
basement pertaining to the volcano and overlying slide chaotic bod@acech during its
complex volcano-tectonic evolution. They are related to the eruptingtyactt Stromboli,



mainly poliphasic and to regional geological processes involvinge¢bbgy of the Aeolian
Arc.

The interpretation of the Chirp line Stromboli canyon P (Figure 18) sumgested the
occurrence of a volcanic acoustic basement, genetically relatélde t&tromboli lavas,
located at depths among 30 and 60 msec. This basement is over@airelaively thick
sequence, characterized by parallel seismic reflectors andrategtas Late Pleistocene fine-
grained sediments (Figure 17). This sequence is overlain by anetherestary sequence,
recognized up to the sea bottom and characterized by a stagsesenic signal of high
amplitude. It has been interpreted as Late Pleistocene coarse-granmesisadiments.

Figure 17 Chirp line Stromboli canyon P and corresponding geologic interpretation.

The interpretation of the Chirp line Stromboli canyon (Figure b8% confirmed the
stratigraphic setting seen in the above mentioned profile. A voleaigstic basement has
been identified at an average depth of 40 msec. This basemeovesed by a seismic
sequence, characterized by parallel reflectors and inter@stedte Pleistocene fine-grained
sediments (Figure 18). This sequence is overlain by anothericsisquence, occurring up
to the sea bottom and characterized by a scattered seigmat Baving a high amplitude.
The sequence has been already interpreted as Late Pleistomarse-grained marine
sediments. Similar results have been obtained through the intaguresétthe Chirp line
Stromboli canyos (Figure 19).

Figure 18 Chirp line Stromboli canyon and corresponding geologic interpretation.

Figure 19 Chirp line Stromboli canyos and corresponding geologic interpretation.

The interpretation of the Chirp line Stromboli esu has evidenced thereesce of a volcanic

acoustic basement overlain by a seismic sequence interpreteatea®leistocene marine
coarse-grained sediments (Figure 20). In the first subbottoimick seismic sequence
characterized by hummocky facies has been interpreted as aefalsnche deposits
genetically related to the Stromboli volcano (Figure 20). Simnndaults have been obtained
through the geologic interpretation of the Chirp line Stromboli 1 eguf& 21) and of the

Chirp line Stromboli 1 esv (Figure 22). The same seismic segadre been recognized
also on the seismic lines Stromboli 1 esw and Stromboli 1 esx (Figures 23 and 24).

Figure 20 Chirp line Stromboli esu and corresponding geologic interpretation.
Figure 21 Chirp line Stromboli 1 est and corresponding geologic interpretation.
Figure 22 Chirp line Stromboli 1 esv and corresponding geologic interpretation.
Figure 23 Chirp line Stromboli 1 esw and corresponding geologic interpretation.

Figure 24 Chirp line Stromboli 1 esx and corresponding geologic interpretation.




Concluding remarks

Some new insights about the morpho-bathymetry, marine geologyiandcsstratigraphy of
the Stromboli submarine area have been discussed through Multibea®ismit data. New
bathymetric maps are here presented coupled to seismic itdéiggren order to provide
new data on the submarine structure of the volcanic edifice of the Stromboli island.

The formation of the Aeolian Arc and consequently of the Strombalndslis genetically
related to the effect of the passive roll-back of the subductiongdléhe lonian crust under
the Calabria region (Maliverno and Ryan, 1986; Kastens et al. 1988) agebdgnamic
processes of partial melting at the scale of the mantleafWand Trua 2002; Figure 4),
allowing for the eastward migration of regional extension aadtiom of oceanic crust in the
Southern Tyrrhenian bathyal plain (Savelli 1984; Rehault et al. 198%riSet al. 1986,
1987; Panza et al. 2003; Procter and Sheridan 2012).

Along the Tyrrhenian margin of Southern Italy and northern Sicihag been noted a wide
seismicity characterized by shallow hypocenters, while in Sbathern Tyrrhenian sea
middle and deep earthquakes have been detected. According to theetat®ns of some
authors the hypocenters define a Benioff zone, suggesting the oceuwta subduction
plan arcuated with the concavity towards the north-west (Gaspamhi 1982; Chouet, 1985;
Chouet et al., 2003). The deep seismicity zone of the southern firamhie overlain by the
recent volcanic arc of the Aeolian islands (Barberi et al. 1Bé8caluva et al. 1985), which
is part of a more extended system of submerged volcanic seaniéoatste, Eolo, Alcione,
Lametini, Palinuro). The magmatic alimentation both for the Aesl@ocanic islands and for
the Marsili back-arc basin derives from the lateral flux ofpdasthenosphere around the
lonian slab and to the consequent fertilization and partial meltindgpeo mantle wedge
(Marani and Trua 2002). The common magmatic source both for thactbea back-arc is
supported by the observation that the lavas sampled on the Marsilngadce comparable,
from a compositional point of view with the lavas of insular argscgl of the Aeolian
volcanoes (Beccaluva et al. 1985).

Eight subaerial volcanic edifices are located in correspondertbe tAeolian Arc. While the

most part of these volcanoes are supplied by fluid magmas gdlyetedated to the lonian

lithospheric slab, other ones (Vulcano, Lipari and Salina) areealiglong a regional strike-
slip fault having a NNW-SSE trending, cutting also the Etna volcame submarine

volcanic districts of the Tyrrhenian sea have been recentlyyzathlalso as possible
geothermal resources, considered the high values of heat flowdreatatthese volcanic
structures (Signanini et al. 2006). Recent Multibeam surveys @dbthern Tyrrhenian sea
have furnished morphological observations of great detail on thewst&uat the submerged
and emerged volcanic arc and on the Tyrrhenian bathyal plairaMand Gamberi 2004a,
2004b).

In the Aeolian Arc the volcanic activity was explicated withrf main phases, ranging in age
from 1-1.3 My B.P. at the Sisifo seamount and at the Filicudi volcalaind (Beccaluva et
al. 1985). From 0.8 My B.P. to recent times shoshonitic and calcalkalias, lconsisting of
basalts, andesitic basalts and rhyolites have been erupted woltla@ic complexes, both
subaerial and submarine (Finizola et al. 2003); (Beccaluva et al. I985).0lcanic edifice
of the Stromboli island started to form about 110 ky ago. The volshows symmetric
flanks and a conical shape and has an average elevation of about 927 mseabtexeel. It



represents the emerged part of an important volcanic edifice, rogh tman 3000 m. The
eruptive activity, typically poliphasic, has controlled a strapdic architecture characterized
by overlapping of different volcanic products (lavas and pyrocs$tiThe formation of the
volcano started about 200 ky B.P. in the north-eastern sector of the velté the growth of
a volcanic edifice now completely eroded, whose central neck ieseped by the
Strombolicchio inlet. About 100 ky B.P., in correspondence to the presentedegnic
edifice, a new volcano started to grow (Paleostromboli I) hiega height of 400 m; a great
part of this volcano was downthrown after great explosions, leaviitg ptace a caldera
having an elliptical shape. The caldera depression was thendrifyjiehe growth of a new
volcano, reaching the height of 700 m (Paleostromboli Il). The lifaisfviblcano concluded
about 35 ky ago with the downthrowing of a new caldera, having aarsibpe. About 34
ky B.P. a new volcano, called Vancori underwent a giant slidints ingper part and in the
western flank. To testify this collapse a large amphitheateraires, which nowadays
surrounds the present top of the Stromboli volcano, including the active crater.

The structure of the Stromboli volcanic island has been recendliedeto that one of the
Campania volcanoes: in both ones a well-developed low velocity layenghethickness of
10-15 km occurs under a thin lid, overlain by a thin continental crust. Thetusal
difference among the Stromboli volcano and the proximal volcanoesloanb and Lipari is
confirmed by the different geochemical characters (Finizola et al., 200B;eRal. 2004).

The collected geological data well fit with the results of plager of Kidd et al. (1998)
focusing on the marine geological setting of the Aeolian islandsSaromboli canyon. The
basin margins are characterized by slump scars, channels and lartgs debthe continental
slope off Calabria region, not imaged by the data discussed ipréisent paper. Blocky
hummocky avalanche deposits have been recognized on the flanks ofothedhitvolcano
(Kidd et al. 1998). This latter evidence is substantially in ageeémith seismo-stratigraphic
data shown in the Subbottom Chirp lines interpreted in this paper,imgferrparticular to
the Chirp line Stromboli esu (Figure 20), Stromboli 1 est (Figure 20mBoli 1 esv (Figure
22), Stromboli 1 esw (Figure 23) and Stromboli 1 esx (Figure 24). Istioeboli canyon
and in minor deep sea channels sediment transport by turbidigntaigenerates sediment
waves. Between the basin margins and the abyssal plain, the outgregpjmanic basement
traps part of the sediment coming from the marginal area (Kidd €998). The volcanic
acoustic basement genetically related to the Stromboli lavaseeaswidely recognized also
in the seismic lines shown in this paper, referring in partidalahe Chirp lines Stromboli
canyon P (Figure 17), Stromboli canyon (Figure 18) and Stromboliosa(Figure 19).
Moreover, the abyssal plain surrounding the volcanic edifice asacterized by low relief
lobes and ponded sediments (Kidd et al. 1998). Circular high backscatfeegphave been
recognized through the interpretation of Sidescan Sonar photomosaick €Kal. 1998),
indicating that volcanic blocks have been transported downslope in the Stromboli canyon.

Blocky hummocky facies have also been recognized in the selsmascinterpreted in the
present paper. The streaked high backscatter patterns at thebasa are interpreted as
coarse-grained sediments transported downslope along the Stromtpdinc(Kidd et al.
1998). Coarse-grained facies have also been recovered in the deiemishown in this
paper.
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