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ABSTRACT 
 
The present study evaluated the impact of sea background noise (the acoustic environment of the 

offshore aquaculture system) and onshore aquaculture system's ambient noise on welfare of gilthead 

sea bream juveniles (Sparus aurata). In particular primary, secondary (biochemical and 

haematological indexes) and tertiary (growth performances) stress responses were evaluated. The 

experiment lasted 120 days during which two different playlists of acoustic stimuli were projected 

inside six experimental tanks (each condition was replicated in three tanks). Offshore aquaculture 

noise conditions were recreated as the typical acoustic field in proximity of an offshore sea cage for 

fish farming using a random sequence of quiet sea background and boat noises. The acoustic field 

inside an onshore open concrete tank for fish farming represented the onshore aquaculture noise 

conditions. The other three tanks were used as a control condition without acoustic projection. The 

weights and lengths of fish exposed to offshore aquaculture noise were higher than the specimens in 

the control and onshore aquaculture groups. Moreover, higher levels of serum cortisol, glucose, red 

blood cell count, haematocrit value and haemoglobin content and lower levels of white blood cells 

were recorded in fish groups from the control and onshore treatments. Reactive Oxygen Metabolites 

(ROMs) and Total Antioxidant Capacity (TACs) of fish exposed to the boat acoustic condition after 

40 days showed a significant increase compared to those of fish of control group. After 80 days 

lower values of TACs were recorded in the boat acoustic condition compared to control and on-

shore aquaculture acoustic condition. 

These results allow us to hypothesise that offshore aquaculture noise and the sea soundscape in 

particular positively influence growth performance and could reduce stress and improve the welfare 

of the sea bream. 
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1. INTRODUCTION AND BACKGROUND 
 

Aquaculture has the potential to play a major role in feeding the human population in the future 

with a growth rate between 1970 and 2006 of 6.9 per cent per annum (FAO 2009). Marine finfish 

aquaculture in Europe is dominated by two major species, Atlantic salmon (Salmo salar) in the 

north, with an annual production of almost 900,000 t (EC Fisheries, 2011), and gilthead sea bream 

(Sparus aurata) in the south, with an estimated production (2008) of almost 129,000 t y−1 (FEAP, 

2009). In both cases, as well as for species such as the European sea bass Dicentrarchus labrax, 

which is cultivated in smaller quantities, the market acceptance of the cultivated product is high 

(Verbeke et al., 2007), and wild-captured fish are often available only at premium prices that are 

inaccessible to most consumers.  

Aquaculture systems comprise different typology of farming structures that are included into two 

larger categories: the onshore and offshore farming system. Although onshore aquaculture 

corresponds to a very significant proportion of world aquaculture, due to the role of Asia Pacific 

region in global production, an important development is currently occurring in Europe and North 

America, driven by the increased interest in offshore aquaculture, made possible through 

improvements in culture structures (Aguilar-Manjarrez et al., 2008). There are a number of potential 

benefits in placing culture structures such as sea cages some distance from the shore, reducing 

visual impacts (Byron and Costa-Pierce, 2010; Byron et al., 2011), and promoting greater 

dispersion of waste products and uneaten food, by taking advantage of stronger hydrodynamics and 

greater water column depth (Holmer, 2010). Fish welfare in offshore farms is expected to improve 

due to higher water quality (Pelegri et al., 2006) with less influence from terrestrial run-off and 

coastal activities, and waste products from farming are rapidly diluted, reducing the local 

environmental effects and increasing the carrying capacity of the farming sites (Holmer, 2010). 

On this regard, recently there is an increasing focus on both the welfare and ethical treatment of 

aquaculture finfish (Ashley, 2007; Conte, 2004). The potential sources of stress in aquaculture 

facilities can be many and varied, the effects of which are often amplified and may lead to poor 

welfare and compromise the health conditions of farmed fish, thus affecting also the profitability of 

the aquaculture industry (Ellis et al., 2002; Conte, 2004; Huntingford et al., 2006). 

Although stressors in an aquaculture setting are unavoidable (Ashley, 2007), the fundamental goal 

for successful growth and production is the development of optimal strategies and practices that 

effectively manage or mitigate acute and/or chronic stressors (Craven et al., 2009).  

It is well known that fish are often subjected to adverse stimuli that cause acute (Pickering 1981; 

Pottinger et al. 1999) or chronic (Pickering 1981; Montero et al. 1999) stress. External 
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(environment) and internal (disease, metabolic unbalance) stressors can determine significant 

modifications of some biochemical parameters (Heath, 1990) that could be able to reveal a poor 

welfare status of animals.  Stress stimuli induce fish to react with a primary neuroendocrine 

response, represented by an increase in corticosteroids (in particular with a cortisol levels 

perturbation) and catecholamines (Pickering 1981). As a direct consequence of their high levels in 

the circulatory system, a wide range of secondary stress responses can be observed, such as the 

increase in blood glucose (Pickering 1981; Melotti et al. 1992) from tissue reserves of glycogen. 

Moreover, during the adaptive stress response, the haemopoietic activity of the spleen increases, 

which encourages the production of red blood cells for oxygen transport (Franklin et al. 1993) and 

increase of other correlated parameters such as haematocrit value and haemoglobin content 

(Pickering 1981; Buscaino et al., 2010; Hady Kacem et al., 1986). Stressful conditions negatively 

affect also both specific and nonspecific immunity, making fish more susceptible to disease 

(Pickering and Pottinger 1989). On this regard, the oxidative stress depicts the existence of products 

called free radicals (molecules possessing an unpaired electron) and reactive oxygen species (ROS), 

which are formed in normal physiology but become deleterious when not being quenched by a 

cascade of antioxidants systems.  Antioxidant defences aimed to protected cells and tissues from 

oxidative damages and neutralize the toxicity of ROS (Asagba et al., 2008).  When ROS production 

is increased the disturbed balance between oxidant and antioxidant factors results in a prooxidative 

condition. 

Oxidative stress is an important component of the stress response in marine organisms, which are 

exposed to a wide variety of environmental stressors on varying temporal and spatial scales (e.g. 

temperature variations, ultra-violet radiation, anthropogenic contamination). The activation of 

immune cells can be a source of the stress-induced ROS production and antioxidant enzymes in 

immune cells play an important role in preventing the ROS-induced injury (Babior, 2000). Oxidante 

antioxidant balance is critical for immune cell functions because of its protective effect of the 

maintenance of cell membrane integrity and functionality (Knight, 2000; Celada and Nathan, 1994). 

Immune cells are particularly sensitive to oxidative stress because (1) their membranes contain high 

concentrations of polyunsaturated fatty acids that are very susceptible to peroxidation, and (2) they 

produce large amounts of ROS when stimulated. Moreover, membrane-related functions are critical 

in maintaining normal function of immune cells and their ability to defend against foreign antigens 

(Yuli et al., 1982).  

Until now are still unknown the potential different influence on fish physiology and welfare of 

specific acoustic background field in onshore and offshore aquaculture system. Sound in an 

important means of communication in aquatic environments because it can be propagated rapidly 
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(five times faster than in air) and it is not attenuated as quickly as other signals such as light or 

chemicals (Smith et al 2004). During the last 50 years, the increase of anthropogenic activities led 

to a considerable increase in the ambient noise (Hildebrand 2009, Ross 2005) that altered the 

"soundscape" on a global scale and the current estimate is that the noise in the oceans due to 

shipping is increasing at about 0.4 dB per year (Ross, 2005). The noise pollution produced by the 

maritime traffic is characterized by signals that cover a wide range of frequencies. The signals 

generated mainly by container ships, ferry boats, boats for recreational activity, fishing boats and 

research vessels are focused around the low frequencies. Other acoustic signals generated at low 

and high frequencies are produced by the equipment used by ships, fishermen, oil industry, 

oceanographers, geologists, meteorologists. For example, the sonar used by fishermen (sonar) 

became an essential tool for searching fish schools. Other measuring instruments are the air guns 

used for geophysical sampling. 

Fish are exposed to a wide range of ambient noise in onshore and offshore culture conditions. In 

offshore cage condition, fish are exposed to noise generated by cage machinery, marine traffic of 

different typologies of boat and sea background noise. An even great amount of noise from multiple 

sources is generated in onshore aquaculture systems due to the use of aerators, air and water pumps, 

tractors, harvesters, water circulations, feeding and sounds that originate from the activities of 

personnel managing the facility (Bart et al., 2001). 

Recently, there is an increased interest on the effects of anthropogenic noise on marine fish (Popper, 

2003). Several field and laboratory studies evaluating the effects of sound on fish have shown that 

increased ambient sound levels could alter their habitat selection, behaviour, and ecology (Pearson 

et al., 1992; Knudsen et al., 1994; Engås et al., 1996; Sand et al., 2000; Tolimieri et al., 2002; 

Popper, 2003). Noise pollution can cause negative effects on fish physiology and welfare such as 

reduced growth rates (Sun et al., 2001), hearing damage (Codarin et al., 2009; Enger, 1981; 

Hastings et al., 1996; Sverdrup et al., 1994; Scholik and Yan, 2001; Amoser and Ladich, 2003; 

McCauley et al., 2003) and stress response (Bart et al., 2001; Engas et al., 1996; Myrberg, 1980; 

Popper et al., 2005; Smith et al., 2004; Wysocki et al., 2006). Smith et al. (2004) examined the 

short- and long-term effects of increased ambient sound on the stress and hearing of goldfish 

(Carassius auratus) recording significant threshold shifts in hearing that increased linearly up to 

approximately 28 dB after 24 h of noise exposure and transient spikes in plasma cortisol levels. 

Moreover, Santulli et al. (1999) observed variations of cortisol, glucose, lactate, AMP, ADP, ATP 

and cAMP (typical primary and secondary stress parameters) in different tissues of Dicentrarchus 

labrax exposed to air gun detonations. Buscaino et al. (2010) showed a disturbance effect of a short-
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term noise exposition (0.1–1 kHz linear sweep, 150 dBrms re 1 µPa) on motility, glucose, lactate 

and haematocrit levels of sea bream and sea bass. 

However, only few studies have investigated the effects of noise on fish physiology, growth, and 

survival within fish culture systems. Terhune et al. (1990) observed decreased growth rates of 

Atlantic salmon (Salmo salar), in fiberglass tanks with sound levels 2–10 dB re 1 µPa higher at 

100–500 Hz than concrete tanks. Recently, Wysocki et al. (2007) found that the hearing, growth, 

survival, and disease resistance of rainbow trout (Oncorhynchus mykiss), cultured within noisy 

recycle systems, were not negatively impacted by long-term exposure to intensive aquaculture 

production noise (115, 130, and 150 dB re 1 µPa rms). Recently, Davidson et al. (2009) observed no 

significant differences in mean weight, length, specific growth rates, condition factor, feed 

conversion and survival of rainbow trout (Oncorhynchus mykiss) exposed for five months to noise 

treatments (117 and 149 dB re 1 µPa rms) recorded in an intensive recycle aquaculture system.  

 

1.1 Objectives 
 

The present study investigated the effects of ambient noise in onshore and offshore aquaculture 

systems on various welfare indexes in gilthead sea bream juveniles (Sparus aurata). Fish welfare 

was evaluated by estimating primary, secondary (assessments of selected biochemical and 

haematological parameters) and tertiary (growth performances) stress indexes after 40, 80 and 120 

days of exposure to the two different ambient noise conditions. The biochemical parameters 

included serum cortisol, blood glucose levels, Total Antioxidant Capacity (TAC), Reactive Oxygen 

Metabolites (ROMs), Total Protein, Albumine, Globuline, A/G ratio, lysozyme and antiprotease 

activity, and the haematological parameters included white blood cell count (WBC), red blood cell 

count (RBC), haematocrit value (PCV) and haemoglobin concentration (Hgb). Growth was 

evaluated through body weight and length measurements. 



10 
 

2. MATERIALS AND METHODS 
 

The present study was carried out at the Institute for Marine and Coastal Environment of the 

National Research Council (CNR-IAMC) facilities of Capo Granitola (SW Sicily) (see Figure 1) for 

120 days from May to September 2012. 

  

 

 

Approximately 400 gilthead sea bream (Sparus aurata) juveniles of four months of age were 

retrieved from the aquaculture AcquaAzzurra fish farm in Siracusa (SE Sicily) (Fig. 2). 

 

Figure 1. Facilities of IAMC-CNR, Detached Unit of Capo Granitola 

Figure 2. Concrete tanks of "AcquaAzzurra" FishFarm in Pachino, Sicily - Italy 
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Fish were captured and placed into a transferring tank (total capacity of 500 litres) (Fig. 3) added 

with a constant oxygen supply form a cylinder. The transport by car lasted five hours. 

 

 

 

After transport, the fishes were transferred to a circular PVC tank (5.0-m diameter and 1.5-m depth) 

for a two-month acclimation period.  

270 fish were randomly sorted from the holding tank, individually weighed and measured (14.70 ± 

4.7 g in weight and 9.75 ± 0.96 cm in fork length; mean ± SD) and assigned to nine identical 

experimental square fiberglass tanks (Fig. 4) in groups of 30 individuals.  

Experimental fiberglass tanks (side length of 1 x 1 m and depth of 1.5 m). The tanks were equipped 

with an independent flow-through seawater system from a common source (25 ± 3.7 l min–1; mean 

± SD). Salinity was 36.4 ± 0.81 ppt (mean ± SD), and temperature was 20.1 ± 0.78°C (mean ± SD). 

Sea bream were fed with commercial pellets (Saipa s.r.l. – Macerata, Italy) twice daily. 

 

 

 

 

 

Figure 3. Transporting tank of 500 litres in capacity 



12 
 

 

 

Three different acoustic conditions were reproduced in the experimental tanks (each condition was 

replicated in three tanks): 

 

Offshore aquaculture condition (OFF) - underwater loudspeakers recreated the typical acoustic field 

in proximity to an offshore fish farm sea cage using a random sequence of sea background and boat 

noises; 

Onshore aquaculture condition (ON) - underwater loudspeakers reproduced the acoustic field inside 

of an onshore fish farm open concrete tank; 

Control condition - without any loudspeakers, fish were exposed to the low-level noise of the 

experimental tank environment. Within each control tank, a loudspeaker PVC mimic was also set 

up to maintain the same landscape of the treatment tanks. 

 

A schematic view of the experimental tanks and acoustic stimuli projection equipment is 

represented in Figure 5. 

 

 

 

 

 

Figure 4. Experimental fiberglass tanks (side length of 1X1 m and depth of 1.5 m). The tanks were equipped 

with an independent flow-through seawater system from a common source 
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During the study period, ten fish per tank were captured and sampled for body measurements 

(weight and total length) and blood collection for the biochemical and haematological parameter 

determinations at intervals of 40, 80 and 120 days. At the same time, the number of deceased fish 

was also registered for each acoustic exposure treatment 

 
 

Amplifiers   PC 

Figure 5. Schematic view of the Experimental Design and real disposition of the three typologies of tanks 
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2.1. Acoustic equipment and recording/projection procedures 
 

To obtain acoustic recordings of the noises from onshore and offshore aquaculture conditions and 

the tank environment, a calibrated hydrophone (model 8104, Bruel & Kjer) was used with a 

sensitivity of −205.6 dB re 1 V/µPa ± 4.0 dB in the 0.1-Hz to 80-kHz frequency band. The 

hydrophone was used with a preamplifier (VP1000, Reson) with a 1-MHz bandwidth single-ended 

voltage, with the high-pass filter set at 10 Hz and a 32-dB gain. The equipment was connected to a 

digital acquisition card (USGH416HB, Avisoft Bioacoustics, set with no gain) managed by Avisoft 

Recorder USGH software (Avisoft Bioacoustics) (Fig. 6). The signals were acquired at 300 

kilosamples s−1 at 16 bits and analysed by the Avisoft-SASLab Pro software (Avisoft Bioacoustics). 

The format of file was .wav. 

 

 

 

The ON noise was recorded inside three concrete rectangular tanks (2.55 x 13 m and 2 m deep) at 

the Acqua Azzurra fish farm.  

The OFF noise was recorded at sea in different locations where gilthead sea bream typically 

inhabits to obtain a verisimilar background acoustic condition of a generic offshore aquaculture 

farm, where the dominant noise is represented by the natural sea soundscape (i.e., no passage of 

boats within a range of 8 kilometres) alternating with the passages of different types of boats (Table 

1 and Fig. 7).  

Figure 6. Equipment for the acoustic data aquisition 
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The noise in the experimental tanks was recorded to characterise the baseline noise of the study 

environment.  

To project the two acoustic stimuli of the obtained files, ON and OFF noises, inside the 

experimental tanks, two different playlists (Table 1) were created.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. One-second spectogram of the ambient experimental tank noise and of different noise 

stimuli: frequency (kHz) vs. time (s). The intensity is reflected by the colour scale (dB re 1 µParms, 

1024-sample FlatTop window) 
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Table 1. Acoustic energy and number of reproduction of the noise stimuli in the two playlists 

 

 

The acoustic stimuli were recorded inside an experimental tank (Fig. 8) in order to measure the 

acoustic energy between the two playlists using the “energy of marked section” function in the 

Avisoft-SASLab Pro software (Avisoft Bioacoustics). First, we evaluated the sum of the total 

energy as the integral of the squared amplitudes, expressed in volts, multiplied by the duration of 

the ON playlist. In order to obtain an energy equilibrium between the two playlists, the OFF playlist 

was created as a mix of repetitions of the background sea-noise file (lower energy file) and boat 

files with the same amount of acoustic energy as the ON playlist. 

 

 

 

 

Noise typology Description 
Duration 

(s) 

Mean total 

Energy per 

sec 

(V2 s) 

Total number of 

file reproduction 

in the playlist 

Total energy 

of file or 

playlist 

(V2 s) 

ON noise  

(playlist 1) 

Sequence of different 

noise from aquaculture 

concrete tanks 

90 0.32 50 1430 

Total playlist 1  4500   1433 

OFF noise 

(playlist 2) 

Quite sea noise 

background file 
30 0.14 140 588.0 

Fishing boat file 46 0.36 1 16.4 

Ferry boat file 101 6.48 1 654.9 

Rubber dinghy file 90 1.62 1 146.2 

Hydrofoil file 63 0.39 1 24.7 

Total playlist 2  4500   1430 
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The two playlists were projected using the “loop mode” function of the Avisoft-SASLab recorder 

software (Avisoft Bioacoustics) that can randomise the emission files sequence, maintaining the 

emission ratio between the different files. Each of the two stereo outputs of the PC, corresponding 

to each playlist, was connected to a Channel Low Impedance Amplifier (model QD-4240 – Inter M, 

Seoul, Korea) (Fig. 9). Each amplifier was connected to six underwater loudspeakers (Model 

UW30, Lubell, Columbus, Ohio, USA) (Fig. 10). 

 

Figure 8. Recording the acoustic stimuli inside an experimental tank with the aim to 

measure the acoustic energy between the two playlists 
 

Figure 9. Audio projection desk station 
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2.2. Blood sampling procedures and body measurements 
 

A standardised handling procedure was applied to minimise the stress involved in blood sampling. 

Blood withdrawal was always performed between 8.00 a.m. and 12.00 a.m., and feeding was 

stopped 24 hours before blood collection. Sea bream were quickly dip-netted from the tanks in less 

than 1 min and immediately anesthetised with 2-phenoxyethanol (1:300 v/v) in a 60-litre bucket. 

Fish reached stage V of anaesthesia (Summerfelt and Smith, 1990) within 2–3 min (Fig. 11).  

 

Figure 10. Underwater loudspeaker fixed to the support inside an experimental tank 
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Immediately after the stunning procedure, sea bream were weighed to the nearest 0.1 g, measured in 

fork length to the nearest millimetre (Fig. 12) and finally underwent venipuncture for blood 

collection. Two operators simultaneously collected the blood from the caudal vein using 1-ml 

syringes with 25 G X 1 1/2 needles in less than 2 min for each fish (Fig. 13).  

For each fish, blood samples were stored in 2 different types of tubes: microtubes (0.6 ml Miniplast, 

LP Italiana Spa, Milano) containing ethylenediaminetetraacetic acid (EDTA; ratio = 1.26 mg/0.6 

ml) as the anticoagulant agent for the haematological analysis and eppendorf tubes (1 ml 

Eppendorf, MBL International Corporation, Woburn, MA USA) with no additive after clotting and 

centrifugation at 3000 rpm for 10 min at 4 °C measurements. Serum samples were split into several 

aliquots and frozen at -20 °C and −80 °C until further analyses. 

After all body measurements and blood collection, all fish were sacrificed using a highly 

concentrated anaesthetic bath and successively stored at -80°C for any future analyses. 

Figure 11. Sea bream placed in the stunning tank. 2-phenoxyethanol was added allowing fishes the 

reaching of the stage V of anaesthesia 
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2.3. Biochemical and haematological analytical methods 
 

The immediate assessment of blood glucose concentration was performed using a portable blood 

glucose analyser (BG STAR, Sanofi Aventis, Milan, Italy). 

From serum frozen at -20 °C Cortisol was measured in 25-µl un-extracted serum samples using a 

commercially available solid-phase 125Iodine radioimmunoassay, Coat-ACount® Cortisol (D.P.C. 

Los Angeles, CA). Data were obtained with a Kontron Analytical MDA 312 gamma counter and 

analysed using RIA software. The analytical sensitivity was 2 ng/ml, and the intra- and inter-assay 

coefficients of variation were 4.7% and 6.4%, respectively. 

All blood samples placed in Miniplast microtubes were analysed in duplicate by the same operator 

immediately after collection. The samples exhibited parallel displacement to the standard curve. 

The overall intra-assay coefficient of variation was < 5%. Analytical measurements were made to 

determine the WBC, RBC, PCV and Hgb. These analyses were performed using a blood cell 

counter already in use in the veterinary field, HeCo Vet C (SEAC, Florence, Italy) (Fig. 14), which 

was suitably modified by a specific software (SEAC, Florence, Italy) designed for the 

haematological analysis of fish species following the method adopted by Fazio et al. (2012). 

 

Figure 12. Body measurement equipment Figure 13. Blood collection procedure 
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Serum samples frozen at -80 °C were sent to the University of Basilicata laboratories for the 

measurement of Total Antioxidant Capacity (TAC), Reactive Oxygen Metabolites (ROMs), Total 

Protein, Albumine, Globuline, A/G ratio, lysozyme and antiprotease activity. 

Total Antioxidant Capacity (TAC) was determined using the ferric ion reducing antioxidant power 

(FRAP) assay as indicated by Benzie and Strain (1996). Firstly, 300 mM sodium acetate buffer, pH 

3.6, 10 mM tris(2-pyridyl)-s-triazine  (TPTZ) in 40 mM HCl and 20 mM iron(III) chloride 

hexahydrate were mixed in a volume ratio of 10:1:1 to generate FRAP fresh daily prepared solution. 

Subsequently, 10 µL of samples in duplicate were added to 300 µL of FRAP solution in wells of a 

microtitre plate and the absorbance of the reaction mixture was recorded at 593 nm after 5 min of 

reaction using a microplate reader (Model 550, BioRad). The standard curve was constructed using 

iron(II) sulfate heptahydrate at concentrations ranging from 62.5 to 1000 µM (Pearson’s correlation 

coefficient: r2 = 1).  

Reactive Oxygen Metabolites (ROMs) were determined using the radical cation N,N-diethyl-para-

phenylendiamine, (DEPPD) as described by Alberti et al. (2000). Ten µL of samples in duplicate 

were added to wells of a microtitre plate. Subsequently, 200 µL of a solution containing 0,37 mM 

DEPPD and 2,8 mM iron (II) sulfate heptahydrate in 100 mM acetate buffer, pH 4.8, was added to 

each well. After incubation (30 min at 25°C) absorbance was recorded at 530 nm using the 

microplate reader. The standard curve was constructed using tert-buthyl-hydroperoxide at 

concentrations ranging from 125 to 1000 µM (Pearson’s correlation coefficient: r2 = 0.99).  

Figure 14. Contaglobuli automatico Heco Vet C 
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2.4. Statistical analysis 
 

The Kolmogorov–Smirnov test was used to check the normal distribution of the biometric and 

biochemical/haematological data. 

A one-way analysis of variance (ANOVA) was applied in order to detect significant differences in 

biometric data (weight and fork length separately) within the experimental tanks, with the factor 

“tank” (fixed and orthogonal, nine levels). 

A two-way ANOVA was applied with two factors (fixed and orthogonal): “time” (3 levels: 40, 80, 

120 days) and “noise exposition” (3 levels: ON, OFF, Control), on each set of  the biometric and 

biochemical/haematological data.  

Newman-Keuls’ multiple comparisons test was used for all post hoc comparisons. 

P-values of <0.05 were considered statistically significant. All statistical analyses were performed 

using the STATISTICA 7.0 (StatSoft) software package.  
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3. RESULTS AND DISCUSSION 

 

All fish used in the present study were healthy as was indicated by their activity and exterior 

appearance and the bacteriological and parasitological examinations carried out in samples. 

Gilthead sea bream weights and lengths at the beginning of the study didn’t show statistical 

difference between specimens of control, offshore and onshore aquaculture condition tanks 

(p>0.05). In the present study, no statistical differences in weight and length were observed between 

fish of the three experimental tanks of each acoustic condition (inside condition comparisons) 

during all sampling time points (p>0.05). Moreover, as reported in Figure 15, weights and lengths 

of control and onshore aquaculture fish groups didn’t show significant statistical difference 

(p>0.05) during all the experimental procedure. Conversely, a significant difference was observed 

in growth between the specimens exposed to the three different acoustic field conditions. Post hoc 

analysis, testing against an α=0.01, indicated that the weight and length of fish exposed to offshore 

aquaculture condition were higher than the specimens of control and onshore aquaculture groups 

after 40, 80 and 120 days, with statistical differences both for weight and length 80 and 120 days 

after the beginning of the experimental procedure (p<0.05 and p<0.01 respectively) (Figure 15).   

In particular, at the end of the experimental phase (120 days) fish of offshore aquaculture group 

showed an increase of 17.26% and 16.95% in weight and of 4.48% and 4.31% % in length respect 

control and onshore aquaculture groups respectively (see Figure 16). Moreover, fish of offshore 

aquaculture group increased from 14.79 ± 0.48 g to 26.97 ± 0.87 g (Mean ± SEM) in weight and 

from 10.69 ± 0.11 to 12.58 ± 0.13 cm (Mean ± SEM) in length with a final growth increment from 

the beginning of the experiment of 82.35% and 17.68% for weight and length respectively.  
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Figure 15. Weights and Lengths (Mean ± SEM) of sea bream from control, onshore and offshore 

aquaculture groups 40, 80 and 120 days after the beginning of the experimental procedure; onshore 

aquaculture/control vs. offshore aquaculture •= p<0.05; ••=p<0.01 
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Figure 16. Weight and Length Curve (Mean ± SEM) of control, onshore and offshore 

aquaculture groups of sea bream from the start to the end of the experiment (after 120 

days). 
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In our study, no statistical differences in all haematological parameters measured were observed 

among fish of the three experimental tanks of each acoustic condition (inside condition 

comparisons) during all sampling time points (p>0.05). 

Cortisol response was higher in sea bream exposed to onshore aquaculture acoustic condition 

compared to the other groups. Moreover, significantly lower cortisol levels were detected in fish of 

offshore aquaculture group respect the onshore aquaculture group (p<0.05) 40 and 80 days after 

acoustic exposition and respect control and onshore aquaculture groups (p<0.05 and p<0.01 

respectively) 120 days after the acoustic exposition.  

At the first sampling time (40 days post-acoustic condition exposition), statistical differences in 

glucose levels were observed only between onshore aquaculture and offshore aquaculture fish 

groups with the latters that showed significant lowest levels (p<0.05) (Fig. 17). At 80 and 120 days 

post-acoustic condition exposition, both control and onshore groups exhibited a significant increase 

of glucose levels respect fish of offshore aquaculture condition (p<0.01).  

At the end of the experiment, cortisol and glucose levels increased in all three experimental groups, 

even if significant differences in cortisol levels between the first (40 days) and final sampling (120 

days) point for onshore aquaculture group (p<0.05) were recorded, and statistical differences in 

glucose levels between the first and the second sampling point (p<0.01) and between the first and 

the final sampling point (p<0.01) both for control and onshore aquaculture groups were observed.  

A significant increase of RBC, PVC e Hgb levels was observed in control and onshore aquaculture 

groups in comparison to the fish of offshore aquaculture group after 40, 80 and 120 days after the 

acoustic field expositions (p<0.05, p<0.01; see Figure 17). No statistical differences between 

control and onshore aquaculture groups were detected (p>0.05) at all sampling points.   

WBC levels showed the highest values at the first sampling time in offshore aquaculture group with 

statistical differences only in comparison to onshore aquaculture group (p<0.05). Moreover, 

significant highest levels of WBC were recorded in offshore aquaculture fish group respect both 

control and onshore aquaculture groups at 80 and 120 days post-acoustic condition exposition 

(p<0.05, p<0.01; see Figure 17).  
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Figure 17. Haematological parameters (Mean ± SEM) of sea bream from control, onshore and offshore 

aquaculture groups 40, 80 and 120 days after the beginning of the experimental procedure; onshore 

aquaculture/control vs. offshore aquaculture •= p<0.05; ••=p<0.01 
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ROMs of fish exposed to the boat acoustic condition after 40 days showed a significant increase 

compared to those of fish of control group (p<0.01); after 40 days, TACs were significantly higher 

in fish exposed to the boat acoustic condition compared to control (p<0.01), while, after 80 days 

lower values were recorded in the boat acoustic condition compared to control and on-shore 

aquaculture acoustic condition (p<0.01) as reported in Figure 18. Both ROMs and TACs showed 

statistically higher levels after 40 days respect 80 days in all the experimental conditions (p<0.001) 

(Fig. 18).  

 

 

 

  

Figure 18. ROMs, TACs , A/G Ratio, Lysozyme and Total Proteins values in the three experimental 
fish groups 
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Results on fish mortality are reported in Figure 19. No mortality was observed during the 

acclimatization period. At the first sampling time (40 days after the beginning of the experiment), 

the absence of fish mortality was recorded in control and offshore aquaculture groups while only 

one death was observed in onshore aquaculture group. The number of deaths increased during the 

experimental acoustic expositions reaching 120 days post-acoustic exposition, the 14.44, 23.33 and 

13.33% (percentage on total fish present inside the three tank of each experimental condition from 

41st to 120th day after the beginning of experiment) in control, onshore and offshore aquaculture 

groups respectively.  

 

 

 

 

 

Our results clearly show that the ambient noise affects hardly some biochemical and haematological 

parameters indexes of acute and chronic stress and the growth rate in gilthead sea bream. In fact, 

fish exposed to the Offshore aquaculture noise show higher growth performances and changes in 

the biochemical/haematological responses in comparison to Control and Onshore aquaculture fish 

groups.  

In this experimental test the onshore aquaculture stimulus, as well as the acoustic stimuli from the 

different type of boat, has the majority of the energy focussed on the frequency range of 0.025-1 

kHz. However, we obtained the same results between fish of onshore aquaculture and control 

groups with the latter that were exposed to lower noise levels respect the other groups. These results 

indicate a non-effect of onshore aquaculture noise on growth and biochemical/haematological data 

Figure 19. Number of dead fishes from control, onshore and offshore aquaculture 

groups during the experimental phase 



30 
 

collected while a relative positive effect of offshore aquaculture noise. In fact, different effects were 

observed on fish exposed to offshore aquaculture noise condition where the dominant noise was 

represented by the sea soundscape alternated by the noise from different kind of boats. Although, 

previous studies have showed the disturbance effects of boating noise on fish (Codarin et al., 2009; 

Myrberg, 1980; Sandstrom et al., 2005; Sarà et al., 2007; Wysocki et al., 2006), the different 

welfare condition observed in the present study could be explained with the very higher number of 

reproductions of the sea background noise compared to the reproductions of boats noise in the 

playlist 1. These evidences allow us to hypothesize that the sea soundscape plays a role in the sea 

bream biology and consequently contributes to improve their welfare status.  
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