Multiscale morphology design of hybrid halide perovskites through a polymeric template

Masi, Sofia and Rizzoli, Aurora and Aiello, Federica and Balzano, Federica and Uccello-Barretta, Gloria and Listorti, Andrea and Gigli, Giuseppe and Colella, Silvia (2015) Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 7 (45). pp. 18956-18963. ISSN 2040-3364

[img] Text
Masi_Nanoscale_2015.pdf - Published Version
Restricted to Registered users only until 9 October 2016.

Download (2MB) | Request a copy
Official URL:


Hybrid halide perovskites have emerged as promising active constituents of next generation solution processable optoelectronic devices. During their assembling process, perovskite components undergo very complex dynamic equilibria starting in solution and progressing throughout film formation. Finding a methodology to control and affect these equilibria, responsible for the unique morphological diversity observed in perovskite films, constitutes a fundamental step towards a reproducible material processability. Here we propose the exploitation of polymer matrices as cooperative assembling components of novel perovskite CH3NH3PbI3 : polymer composites, in which the control of the chemical interactions in solution allows a predictable tuning of the final film morphology. We reveal that the nature of the interactions between perovskite precursors and polymer functional groups, probed by Nuclear Magnetic Resonance (NMR) spectroscopy and Dynamic Light Scattering (DLS) techniques, allows the control of aggregates in solution whose characteristics are strictly maintained in the solid film, and permits the formation of nanostructures that are inaccessible to conventional perovskite depositions. These results demonstrate how the fundamental chemistry of perovskite precursors in solution has a paramount influence on controlling and monitoring the final morphology of CH3NH3PbI3 (MAPbI3) thin films, foreseeing the possibility of designing perovskite : polymer composites targeting diverse optoelectronic applications.

Item Type: Article
Uncontrolled Keywords: polymer, perovskite, morphology, stability
Subjects: 500 Scienze naturali e Matematica > 540 Chimica e scienze connesse
Depositing User: Dr Aurora Rizzo
Date Deposited: 26 May 2016 12:58
Last Modified: 26 May 2016 12:58

Actions (login required)

View Item View Item