Cooperative effect of GO and Glucose on PEDOT:PSS for High VOC and Hysteresis-Free Solution Processed Perovskite Solar Cells

Giuri, Antonella and Masi, Sofia and Colella, Silvia and Kovtun, Alessandro and Dell’Elce, Simone and Treossi, Emanuele and Liscio, Andrea and Esposito Corcione, Carola and Rizzo, Aurora and Listorti, Andrea (2016) Cooperative effect of GO and Glucose on PEDOT:PSS for High VOC and Hysteresis-Free Solution Processed Perovskite Solar Cells. Advanced Functional Materials, 26 (38). pp. 6985-6994. ISSN 1616-301X

WarningThere is a more recent version of this item available.
[img] Text
Giuri_Advanced Fucntional Mater.pdf - Accepted Version
Restricted to Registered users only until 12 October 2017.

Download (6MB) | Request a copy

Abstract

Hybrid organic-inorganic halide perovskites have emerged at the forefront of solution-processable photovoltaic devices. Being the perovskite precursor mixture a complex equilibrium of species, it is very difficult to predict/control their interactions with different substrates, thus the final film properties and device performances. Here the wettability of CH3NH3PbI3 (MAPbI3) onto Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer is improved by exploiting the cooperative effect of graphene oxide (GO) and glucose inclusion. The glucose, in addition, triggers the reduction of GO enhancing the conductivity of the PEDOT:PSS+GO+glucose based nanocomposite. The relevance of this approach towards photovoltaic applications is demonstrated by fabricating a hysteresis-free MAPbI3 solar cells displaying a 37% improvement in power conversion efficiency if compared to a device grown onto pristine PEDOT:PSS. Most importantly, VOC reaches values over 1.05 V that are among the highest ever reported for PEDOT:PSS p-i-n device architecture, suggesting minimal recombination losses, high hole-selectivity and reduced trap density at the PEDOT:PSS along with optimized MAPbI3 coverage.

Item Type: Article
Uncontrolled Keywords: perovskite solar cells, graphene oxide reduction, glucose, PEDOT:PSS nanocomposite, wettability
Subjects: 500 Scienze naturali e Matematica > 540 Chimica e scienze connesse
Depositing User: Dr Aurora Rizzo
Date Deposited: 08 Mar 2017 10:55
Last Modified: 08 Mar 2017 10:55
URI: http://eprints.bice.rm.cnr.it/id/eprint/16059

Available Versions of this Item

Actions (login required)

View Item View Item