On the use of highly pixellated CMOS imagers to measure therapeutic beam profile

Servoli, L. and Alunni Solestizi, L. and Biasini, M. and Fabiani, S. and Italiani, M. and Kanxheri, K. and Tucceri, P. (2018) On the use of highly pixellated CMOS imagers to measure therapeutic beam profile. Il nuovo cimento C, 41 (6). pp. 1-8. ISSN 1826-9885

[img]
Preview
Text
ncc11691.pdf - Published Version

Download (777kB) | Preview
Official URL: https://www.sif.it/riviste/sif/ncc/econtents/2018/...

Abstract

The characterization of high-intensity charged-particle and photon beams at medical accelerators is often a time-consuming task. In this work, we discuss the possibility to use highly segmented CMOS imagers as a way to measure the fluxes with high spatial precision and in a short time. Quite recently CMOS imagers, designed to collect visible light, have been used to detect ionizing radiation, either charged particles (electron, proton) or photons. These devices, due to the very low single pixel noise, have a very high detection efficiency, once the interaction between radiation and silicon has taken place, and act primarily as counting detectors. We will show how it is possible to extract a precise beam shape using as a test case a therapeutic electron beam delivered by an Elekta e-LINAC at the S. Maria Hospital in Terni (Italy), and as sensors commercial off-the-shelf (COTS) CMOS imagers.

Item Type: Article
Subjects: 500 Scienze naturali e Matematica > 530 Fisica
Depositing User: Marina Spanti
Date Deposited: 27 Nov 2020 09:41
Last Modified: 27 Nov 2020 09:41
URI: http://eprints.bice.rm.cnr.it/id/eprint/20353

Actions (login required)

View Item View Item